1
|
Tavakolian S, Goudarzi H, Faghihloo E. Cyclin-dependent kinases and CDK inhibitors in virus-associated cancers. Infect Agent Cancer 2020; 15:27. [PMID: 32377232 PMCID: PMC7195796 DOI: 10.1186/s13027-020-00295-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The role of several risk factors, such as pollution, consumption of alcohol, age, sex and obesity in cancer progression is undeniable. Human malignancies are mainly characterized by deregulation of cyclin-dependent kinases (CDK) and cyclin inhibitor kinases (CIK) activities. Viruses express some onco-proteins which could interfere with CDK and CIKs function, and induce some signals to replicate their genome into host's cells. By reviewing some studies about the function of CDK and CIKs in cells infected with oncoviruses, such as HPV, HTLV, HERV, EBV, KSHV, HBV and HCV, we reviewed the mechanisms of different onco-proteins which could deregulate the cell cycle proteins.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Dutta S, Robitaille A, Olivier M, Rollison DE, Tommasino M, Gheit T. Genome Sequence of a Novel Human Gammapapillomavirus Isolated from Skin. GENOME ANNOUNCEMENTS 2017; 5:e00439-17. [PMID: 28596396 PMCID: PMC5465615 DOI: 10.1128/genomea.00439-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
A new human gammapapillomavirus (HPV_MTS2) genome was isolated and fully cloned from a skin swab. The L1 open reading frame of HPV_MTS2 was 79% and 80% identical to those of its closest relatives, HPV type 149 (species Gamma-7 of the genus Gammapapillomavirus) and HPV isolate Dysk2 (GenBank accession no. KX781281), respectively, thus qualifying it as a new HPV type.
Collapse
Affiliation(s)
- Sankhadeep Dutta
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Alexis Robitaille
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
3
|
Synthetic lethal mutations in the cyclin A interface of human cytomegalovirus. PLoS Pathog 2017; 13:e1006193. [PMID: 28129404 PMCID: PMC5298330 DOI: 10.1371/journal.ppat.1006193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/08/2017] [Accepted: 01/19/2017] [Indexed: 11/29/2022] Open
Abstract
Generally, the antagonism between host restriction factors and viral countermeasures decides on cellular permissiveness or resistance to virus infection. Human cytomegalovirus (HCMV) has evolved an additional level of self-imposed restriction by the viral tegument protein pp150. Depending on a cyclin A-binding motif, pp150 prevents the onset of viral gene expression in the S/G2 cell cycle phase of otherwise fully permissive cells. Here we address the physiological relevance of this restriction during productive HCMV infection by employing a cyclin A-binding deficient pp150 mutant virus. One consequence of unrestricted viral gene expression in S/G2 was the induction of a G2/M arrest. G2-arrested but not mitotic cells supported viral replication. Cyclin A destabilization by the viral gene product pUL21a was required to maintain the virus-permissive G2-arrest. An HCMV double-point mutant where both pp150 and pUL21a are disabled in cyclin A interaction forced mitotic entry of the majority of infected cells, with a severe negative impact on cell viability and virus growth. Thus, pp150 and pUL21a functionally cooperate, together building a cell cycle synchronization strategy of cyclin A targeting and avoidance that is essential for productive HCMV infection. Efficient virus replication depends on continuous, uninterrupted supply with metabolites and replication factors from the host cell. This is difficult to achieve in actively dividing cells, especially for a slowly replicating virus like HCMV, a widespread pathogen of major medical importance in immunocompromised patients. To ensure that viral replication is not disturbed by cell division, HCMV has developed a twofold strategy of cyclin A targeting and avoidance. First, HCMV employs the viral cyclin A substrate pp150 to synchronize the onset of replication with G1, a cell cycle phase of low cyclin A expression. Then, HCMV expresses the cyclin A destabilizing factor pUL21a to maintain the G1 cell cycle state until the successful release of virus progeny. While this strategy is based on two viral proteins, a cyclin A sensor and effector, it relies on one and the same type of cyclin A interaction motif, making HCMV vulnerable to binding site disruption.
Collapse
|
4
|
The role of ubiquitin and ubiquitin-like modification systems in papillomavirus biology. Viruses 2014; 6:3584-611. [PMID: 25254385 PMCID: PMC4189040 DOI: 10.3390/v6093584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA viruses that are important etiological agents of a spectrum of human skin lesions from benign to malignant. Because of their limited genome coding capacity they express only a small number of proteins, only one of which has enzymatic activity. Additionally, the HPV productive life cycle is intimately tied to the epithelial differentiation program and they must replicate in what are normally non-replicative cells, thus, these viruses must reprogram the cellular environment to achieve viral reproduction. Because of these limitations and needs, the viral proteins have evolved to co-opt cellular processes primarily through protein-protein interactions with critical host proteins. The ubiquitin post-translational modification system and the related ubiquitin-like modifiers constitute a widespread cellular regulatory network that controls the levels and functions of thousands of proteins, making these systems an attractive target for viral manipulation. This review describes the interactions between HPVs and the ubiquitin family of modifiers, both to regulate the viral proteins themselves and to remodel the host cell to facilitate viral survival and reproduction.
Collapse
|
5
|
Hipp K, Rau P, Schäfer B, Gronenborn B, Jeske H. The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants. Virology 2014; 462-463:189-98. [PMID: 24999043 DOI: 10.1016/j.virol.2014.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/17/2023]
Abstract
Geminiviruses, single-stranded DNA plant viruses, encode a replication-initiator protein (Rep) that is indispensable for virus replication. A potential cyclin interaction motif (RXL) in the sequence of African cassava mosaic virus Rep may be an alternative link to cell cycle controls to the known interaction with plant homologs of retinoblastoma protein (pRBR). Mutation of this motif abrogated rereplication in fission yeast induced by expression of wildtype Rep suggesting that Rep interacts via its RXL motif with one or several yeast proteins. The RXL motif is essential for viral infection of Nicotiana benthamiana plants, since mutation of this motif in infectious clones prevented any symptomatic infection. The cell-cycle link (Clink) protein of a nanovirus (faba bean necrotic yellows virus) was investigated that activates the cell cycle by binding via its LXCXE motif to pRBR. Expression of wildtype Clink and a Clink mutant deficient in pRBR-binding did not trigger rereplication in fission yeast.
Collapse
Affiliation(s)
- Katharina Hipp
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Peter Rau
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Benjamin Schäfer
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif-sur-Yvette, France
| | - Holger Jeske
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
6
|
De Muyt A, Zhang L, Piolot T, Kleckner N, Espagne E, Zickler D. E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis. Genes Dev 2014; 28:1111-23. [PMID: 24831702 PMCID: PMC4035539 DOI: 10.1101/gad.240408.114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human enhancer of invasion-10 (Hei10) mediates meiotic recombination and plays important roles in cell proliferation. Here, De Muyt et al. analyzed the function of Hei10 during meiosis and throughout the sexual cycle of the fungus Sordaria. The data suggest that Hei10 integrates signals from the synaptonemal complex, recombination complexes, and the cell cycle to mediate the programmed assembly and disassembly of recombination complexes via SUMOylation/ubiquitination. This study delineates the role of Hei10 in regulating meiotic recombination and provides new perspectives on its role outside meiosis. Human enhancer of invasion-10 (Hei10) mediates meiotic recombination and also plays roles in cell proliferation. Here we explore Hei10’s roles throughout the sexual cycle of the fungus Sordaria with respect to localization and effects of null, RING-binding, and putative cyclin-binding (RXL) domain mutations. Hei10 makes three successive types of foci. Early foci form along synaptonemal complex (SC) central regions. At some of these positions, depending on its RING and RXL domains, Hei10 mediates development and turnover of two sequential types of recombination complexes, each demarked by characteristic amplified Hei10 foci. Integration with ultrastructural data for recombination nodules further reveals that recombination complexes differentiate into three types, one of which corresponds to crossover recombination events during or prior to SC formation. Finally, Hei10 positively and negatively modulates SUMO localization along SCs by its RING and RXL domains, respectively. The presented findings suggest that Hei10 integrates signals from the SC, associated recombination complexes, and the cell cycle to mediate both the development and programmed turnover/evolution of recombination complexes via SUMOylation/ubiquitination. Analogous cell cycle-linked assembly/disassembly switching could underlie localization and roles for Hei10 in centrosome/spindle pole body dynamics and associated nuclear trafficking. We suggest that Hei10 is a unique type of structure-based signal transduction protein.
Collapse
Affiliation(s)
- Arnaud De Muyt
- UMR 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay, France; Institut Curie, 75248 Paris Cedex 05, France
| | - Liangran Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Tristan Piolot
- UMR 3215, INSERM U934, Institut Curie, 75005 Paris, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eric Espagne
- UMR 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay, France
| | - Denise Zickler
- UMR 8621, Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay, France
| |
Collapse
|
7
|
Papillomavirus associated diseases of the horse. Vet Microbiol 2013; 167:159-67. [DOI: 10.1016/j.vetmic.2013.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/04/2013] [Accepted: 08/05/2013] [Indexed: 12/30/2022]
|
8
|
Doorbar J. The E4 protein; structure, function and patterns of expression. Virology 2013; 445:80-98. [PMID: 24016539 DOI: 10.1016/j.virol.2013.07.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 01/05/2023]
Abstract
The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1^E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein's flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1^E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1^E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1^E4, these kinases regulate one of the E1^E4 proteins main functions, the association with the cellular keratin network, and eventually also its cleavage by the protease calpain which allows assembly into amyloid-like fibres and reorganisation of the keratin network. Although the E4 proteins of different HPV types appear divergent at the level of their primary amino acid sequence, they share a recognisable modular organisation and pattern of expression, which may underlie conserved functions and regulation. Assembly into higher-order multimers and suppression of cell proliferation are common to all E4 proteins examined. Although not yet formally demonstrated, a role in virus release and transmission remains a likely function for E4.
Collapse
Affiliation(s)
- John Doorbar
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom.
| |
Collapse
|
9
|
Abstract
A divergent human gammapapillomavirus (γ-HPV) genome in a nasal swab from an elderly Finnish patient with respiratory symptoms was genetically characterized. The L1 gene of HPV-Fin864 shared <70% nucleotide identity to other reported γ-HPV genomes, provisionally qualifying it as a new species in the Gammapapillomavirus genus.
Collapse
|