1
|
Sharma R, Malviya R, Singh S, Prajapati B. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels 2023; 9:gels9050430. [PMID: 37233021 DOI: 10.3390/gels9050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates are polysaccharides that are produced naturally and can be isolated from brown sea algae and bacteria. Sodium alginate (SA) is utilized extensively in the field of biological soft tissue repair and regeneration owing to its low cost, high biological compatibility, and quick and moderate crosslinking. In addition to their high printability, SA hydrogels have found growing popularity in tissue engineering, particularly due to the advent of 3D bioprinting. There is a developing curiosity in tissue engineering with SA-based composite hydrogels and their potential for further improvement in terms of material modification, the molding process, and their application. This has resulted in numerous productive outcomes. The use of 3D scaffolds for growing cells and tissues in tissue engineering and 3D cell culture is an innovative technique for developing in vitro culture models that mimic the in vivo environment. Especially compared to in vivo models, in vitro models were more ethical and cost-effective, and they stimulate tissue growth. This article discusses the use of sodium alginate (SA) in tissue engineering, focusing on SA modification techniques and providing a comparative examination of the properties of several SA-based hydrogels. This review also covers hydrogel preparation techniques, and a catalogue of patents covering different hydrogel formulations is also discussed. Finally, SA-based hydrogel applications and future research areas concerning SA-based hydrogels in tissue engineering were examined.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| |
Collapse
|
2
|
Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines 2022; 10:biomedicines10051095. [PMID: 35625830 PMCID: PMC9139175 DOI: 10.3390/biomedicines10051095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the history of biomedicine and biomedical devices, heart valve manufacturing techniques have undergone a spectacular evolution. However, important limitations in the development and use of these devices are known and heart valve tissue engineering has proven to be the solution to the problems faced by mechanical and prosthetic valves. The new generation of heart valves developed by tissue engineering has the ability to repair, reshape and regenerate cardiac tissue. Achieving a sustainable and functional tissue-engineered heart valve (TEHV) requires deep understanding of the complex interactions that occur among valve cells, the extracellular matrix (ECM) and the mechanical environment. Starting from this idea, the review presents a comprehensive overview related not only to the structural components of the heart valve, such as cells sources, potential materials and scaffolds fabrication, but also to the advances in the development of heart valve replacements. The focus of the review is on the recent achievements concerning the utilization of natural polymers (polysaccharides and proteins) in TEHV; thus, their extensive presentation is provided. In addition, the technological progresses in heart valve tissue engineering (HVTE) are shown, with several inherent challenges and limitations. The available strategies to design, validate and remodel heart valves are discussed in depth by a comparative analysis of in vitro, in vivo (pre-clinical models) and in situ (clinical translation) tissue engineering studies.
Collapse
|
3
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
4
|
Liao S, Meng H, Li J, Zhao J, Xu Y, Wang A, Xu W, Peng J, Lu S. Potential and recent advances of microcarriers in repairing cartilage defects. J Orthop Translat 2021; 27:101-109. [PMID: 33520655 PMCID: PMC7810913 DOI: 10.1016/j.jot.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/11/2022] Open
Abstract
Articular cartilage regeneration is one of the challenges faced by orthopedic surgeons. Microcarrier applications have made great advances in cartilage tissue engineering in recent years and enable cost-effective cell expansion, thus providing permissive microenvironments for cells. In addition, microcarriers can be loaded with proteins, factors, and drugs for cartilage regeneration. Some microcarriers also have the advantages of injectability and targeted delivery. The application of microcarriers with these characteristics can overcome the limitations of traditional methods and provide additional advantages. In terms of the transformation potential, microcarriers have not only many advantages, such as providing sufficient and beneficial cells, factors, drugs, and microenvironments for cartilage regeneration, but also many application characteristics; for example, they can be injected to reduce invasiveness, transplanted after microtissue formation to increase efficiency, or combined with other stents to improve mechanical properties. Therefore, this technology has enormous potential for clinical transformation. In this review, we focus on recent advances in microcarriers for cartilage regeneration. We compare the characteristics of microcarriers with other methods for repairing cartilage defects, provide an overview of the advantages of microcarriers, discuss the potential of microcarrier systems, and present an outlook for future development. Translational potential of this article We reviewed the advantages and recent advances of microcarriers for cartilage regeneration. This review could give many scholars a better understanding of microcarriers, which can provide doctors with potential methods for treating patients with cartilage injure.
Collapse
Affiliation(s)
- Sida Liao
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haoye Meng
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junkang Li
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jun Zhao
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yichi Xu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Aiyuan Wang
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenjing Xu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shibi Lu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
5
|
Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF. Ultra-Low-Cost 3D Bioprinting: Modification and Application of an Off-the-Shelf Desktop 3D-Printer for Biofabrication. Front Bioeng Biotechnol 2019; 7:184. [PMID: 31417899 PMCID: PMC6684753 DOI: 10.3389/fbioe.2019.00184] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
3D bioprinting has become a versatile and powerful method in tissue engineering and regenerative medicine and is increasingly adapted by other disciplines due to its tremendous potential beyond its typical applications. However, commercially available 3D bioprinting systems are typically expensive circumventing the broad implementation, including laboratories in low-resource settings. To address the limitations of conventional and commercially available technology, we developed a 3D bioprinter by modification of an off-the-shelf 3D desktop printer, that can be installed within a single day, is of handy size to fit into a standard laminar flow hood, customizable, ultra-low cost and thus, affordable to a broad range of research labs, or educational institutions. We evaluate accuracy and reproducibility of printing results using alginate and alginate/gelatin-hydrogels and demonstrate its potential for biomedical use by printing of various two-and three-dimensional cell-free and mammalian cell-laden objects using recombinant HEKYFP cells, stably expressing yellow fluorescent protein (YFP) as a model system and high-content imaging. We further provide a parts list and 3D design files in STL and STEP format for reconstructing the device. A time-lapse video of the custom-built device during operation is available at https://vimeo.com/274482794.
Collapse
Affiliation(s)
- Melanie Kahl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Gertig
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Phillipp Hoyer
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Use of Anionic Polysaccharides in the Development of 3D Bioprinting Technology. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three-dimensional (3D) bioprinting technology is now one of the best ways to generate new biomaterial for potential biomedical applications. Significant progress in this field since two decades ago has pointed the way toward use of natural biopolymers such as polysaccharides. Generally, these biopolymers such as alginate possess specific reactive groups such as carboxylate able to be chemically or enzymatically functionalized to generate very interesting hydrogel structures with biomedical applications in cell generation. This present review gives an overview of the main natural anionic polysaccharides and focuses on the description of the 3D bioprinting concept with the recent development of bioprinting processes using alginate as polysaccharide.
Collapse
|
7
|
Pan YL, Ma Y, Guo Y, Tu J, Guo GP, Ma SM, Zheng SY, Tu PC, Yu BB, Huang GC. Effects of Clematis chinensis Osbeck mediated by low-intensity pulsed ultrasound on transforming growth factor-β/Smad signaling in rabbit articular chondrocytes. J Med Ultrason (2001) 2019; 46:177-186. [DOI: 10.1007/s10396-018-0920-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
|
8
|
Byvaltsev VA, Kolesnikov SI, Bardonova LA, Belykh EG, Korytov LI, Giers MB, Preul MC. Assessment of Lactate Production and Proteoglycans Synthesis by the Intact and Degenerated Intervertebral Disc Cells under the Influence of Activated Macrophages: an In Vitro Study. Bull Exp Biol Med 2018; 166:170-173. [PMID: 30417288 DOI: 10.1007/s10517-018-4307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/11/2022]
Abstract
The effects of proinflammatory cytokines on the secretion of glycosaminoglycans and lactate production by normal and degenerated intervertebral disk cells were studied on the model of their co-culturing with activated macrophage-like cells. It was found that proinflammatory cytokines produced a direct effect on intervertebral disk cells in a 3D culture reducing the rate of glycolysis and synthetic activity of both normal and degenerated cells of annulus fibrosus and nucleus pulposus, which is an important factor in progression of intervertebral disk degeneration.
Collapse
Affiliation(s)
- V A Byvaltsev
- Irkutsk State Medical University, Irkutsk, Russia. .,Irkutsk Research Center of Surgery and Traumatology, Irkutsk, Russia. .,Railroad Clinical Hospital at Irkutsk-Passenger Station, Russian Railways Company, Irkutsk, Russia.
| | - S I Kolesnikov
- Research Center for Problems of Family Health and Human Reproduction, Irkutsk, Russia.,M. V. Lomonosov Moscow State University, Moscow, Russia
| | - L A Bardonova
- Irkutsk State Medical University, Irkutsk, Russia.,Barrow Neurological Institute, Phoenix, AZ, USA
| | - E G Belykh
- Irkutsk State Medical University, Irkutsk, Russia.,Barrow Neurological Institute, Phoenix, AZ, USA
| | - L I Korytov
- Irkutsk State Medical University, Irkutsk, Russia
| | - M B Giers
- Oregon State University, Corvallis, OR, USA
| | - M C Preul
- Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
9
|
Byvaltsev VA, Kolesnikov SI, Bardonova LA, Belykh EG, Korytov LI, Giers MB, Bowen S, Preul MC. Development of an In Vitro Model of Inflammatory Cytokine Influences on Intervertebral Disk Cells in 3D Cell Culture Using Activated Macrophage-Like THP-1 Cells. Bull Exp Biol Med 2018; 166:151-154. [PMID: 30417291 DOI: 10.1007/s10517-018-4304-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 01/04/2023]
Abstract
We developed a new model for evaluation of the influence of proinflammatory cytokines on intervertebral disc cells in a 3D culture based on co-culturing of these cells with activated macrophage-like THP-1 cells. The levels of TNFα, IL-1β, IL-6, IL-8, IL-10, and IL-12p70 production were assessed by flow cytofluorometry using microspheres. Considerable differences in the level of spontaneous cytokine secretion by normal and degenerated intervertebral disc cells were revealed. A significant increase in the level of IL-1β and IL-8 was observed during co-culturing, which confirms consistency of the developed model.
Collapse
Affiliation(s)
- V A Byvaltsev
- Irkutsk State Medical University, Irkutsk, Russia.
- Irkutsk Research Center of Surgery and Traumatology, Irkutsk, Russia.
- Railroad Clinical Hospital at Irkutsk-Passenger Station, Russian Railways Company, Irkutsk, Russia.
| | - S I Kolesnikov
- Research Center for Problems of Family Health and Human Reproduction, Irkutsk, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - L A Bardonova
- Irkutsk State Medical University, Irkutsk, Russia
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - E G Belykh
- Irkutsk State Medical University, Irkutsk, Russia
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - L I Korytov
- Irkutsk State Medical University, Irkutsk, Russia
| | - M B Giers
- Oregon State University, Corvallis, OR, USA
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - S Bowen
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - M C Preul
- Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
10
|
Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials 2018; 171:118-132. [PMID: 29684676 DOI: 10.1016/j.biomaterials.2018.04.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 01/08/2023]
Abstract
Cartilage has rather limited capacities for self-repair and regeneration. To repair complexly shaped cartilage tissue defects, we propose the application of microtissues fabricated from bone marrow-derived mesenchymal stem cells (BMSCs) cultured in natural bionic nanofibrous microcarriers (NF-MCs). The NF-MCs were structurally and functionally designed to mimic natural extracellular matrix (ECM) by crosslinking dialdehyde bacterial cellulose (DBC) with DL-allo-hydroxylysine (DHYL) and complexing chitosan (CS) with DHYL through electrostatic interactions. The orthogonal design allows for fine tuning of fiber diameter, pore size, porosity, mechanical properties, and biodegradation rate of the NF-MC. BMSCs cultured in NF-MCs showed improved proliferation compared with those cultured in chitosan microcarriers (CS-MCs). After three-week culture under microgravity conditions, functional cartilage microtissues were generated. When implanted into a knee articular cartilage defect in mice, the microtissue showed superior in vivo cartilage repair as characterized by cell tracking, histology, micro CT image, and gait analysis. Versatile in natural biopolymer design and biomimetic in nanofibrous component embedded in macroporous microcarriers, these injectable NC-MCs demonstrate to be effective carriers for cell proliferation and differentiation. Furthermore, the functional microtissues also show their prospect in repair of cartilage tissue, and suggest their potential for other tissues in general.
Collapse
|
11
|
hASC and DFAT, Multipotent Stem Cells for Regenerative Medicine: A Comparison of Their Potential Differentiation In Vitro. Int J Mol Sci 2017; 18:ijms18122699. [PMID: 29236047 PMCID: PMC5751300 DOI: 10.3390/ijms18122699] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/23/2017] [Accepted: 12/09/2017] [Indexed: 01/01/2023] Open
Abstract
Adipose tissue comprises both adipose and non-adipose cells such as mesenchymal stem cells. These cells show a surface antigenic profile similar to that of bone-marrow-derived MSC. The cells derived from the dedifferentiation of mature adipocytes (DFAT) are another cell population with characteristics of stemness. The aim of this study is to provide evidence of the stemness, proliferation, and differentiation of human adipose stem cells (hASC) and DFAT obtained from human subcutaneous AT and evaluate their potential use in regenerative medicine. Cell populations were studied by histochemical and molecular biology techniques. Both hASC and DFAT were positive for MSC markers. Their proliferative capacity was similar and both populations were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages. DFAT were able to accumulate lipids and their lipoprotein lipase and adiponectin gene expression were high. Alkaline phosphatase and RUNX2 gene expression were greater in hASC than in DFAT at 14 days but became similar after three weeks. Both cell populations were able to differentiate into chondrocytes, showing positive staining with Alcian Blue and gene expression of SOX9 and ACAN. In conclusion, both hASC and DFAT populations derived from AT have a high differentiation capacity and thus may have applications in regenerative medicine.
Collapse
|
12
|
Nachlas ALY, Li S, Davis ME. Developing a Clinically Relevant Tissue Engineered Heart Valve-A Review of Current Approaches. Adv Healthc Mater 2017; 6. [PMID: 29171921 DOI: 10.1002/adhm.201700918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Indexed: 11/08/2022]
Abstract
Tissue engineered heart valves (TEHVs) have the potential to address the shortcomings of current implants through the combination of cells and bioactive biomaterials that promote growth and proper mechanical function in physiological conditions. The ideal TEHV should be anti-thrombogenic, biocompatible, durable, and resistant to calcification, and should exhibit a physiological hemodynamic profile. In addition, TEHVs may possess the capability to integrate and grow with somatic growth, eliminating the need for multiple surgeries children must undergo. Thus, this review assesses clinically available heart valve prostheses, outlines the design criteria for developing a heart valve, and evaluates three types of biomaterials (decellularized, natural, and synthetic) for tissue engineering heart valves. While significant progress has been made in biomaterials and fabrication techniques, a viable tissue engineered heart valve has yet to be translated into a clinical product. Thus, current strategies and future perspectives are also discussed to facilitate the development of new approaches and considerations for heart valve tissue engineering.
Collapse
Affiliation(s)
- Aline L. Y. Nachlas
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Siyi Li
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Michael E. Davis
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- Children's Heart Research & Outcomes (HeRO) Center Children's Healthcare of Atlanta & Emory University Atlanta GA 30322 USA
| |
Collapse
|
13
|
Cooke ME, Pearson MJ, Moakes RJA, Weston CJ, Davis ET, Jones SW, Grover LM. Geometric confinement is required for recovery and maintenance of chondrocyte phenotype in alginate. APL Bioeng 2017; 1:016104. [PMID: 31069284 PMCID: PMC6481693 DOI: 10.1063/1.5006752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/01/2017] [Indexed: 11/14/2022] Open
Abstract
Human articular chondrocytes lose their native phenotype when expanded in traditional monolayer cultures. As a consequence, hydrogel encapsulation has been investigated as a means to maintain the natural phenotype. Alginate has been widely used for cartilage engineering as it has been shown to enable the recovery of a native collagen type II expressing chondrocyte phenotype. This study has evaluated whether the capacity of the materials to maintain/revert the phenotype is due to the composition of the material or the physical entrapment provided by the gel. To achieve this, an alginate “fluid gel” (a shear-thinning structured gel system) was produced of identical chemistry to a traditionally gelled alginate structure. Both were seeded with passaged primary human articular chondrocytes. Chondrocytes in quiescent alginate showed the recovery of the native phenotype and a spherical morphology. Chondrocytes in alginate fluid gel were unable to maintain the recovered phenotype despite having a spherical morphology and were shown to have a lower level of entrapment than those in quiescent alginate. These findings indicate that geometric entrapment is essential for the maintenance of a recovered chondrocyte phenotype in alginate.
Collapse
Affiliation(s)
| | - Mark J Pearson
- Institute of Inflammation and Ageing, MRC Musculoskeletal Ageing Centre, QE Hospital, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Richard J A Moakes
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Christopher J Weston
- Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Edward T Davis
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham B31 2AP, United Kingdom
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Musculoskeletal Ageing Centre, QE Hospital, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| |
Collapse
|
14
|
Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: A comprehensive review on bioprintable materials. Biotechnol Adv 2017; 35:217-239. [PMID: 28057483 DOI: 10.1016/j.biotechadv.2016.12.006] [Citation(s) in RCA: 559] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/16/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
This paper discusses "bioink", bioprintable materials used in three dimensional (3D) bioprinting processes, where cells and other biologics are deposited in a spatially controlled pattern to fabricate living tissues and organs. It presents the first comprehensive review of existing bioink types including hydrogels, cell aggregates, microcarriers and decellularized matrix components used in extrusion-, droplet- and laser-based bioprinting processes. A detailed comparison of these bioink materials is conducted in terms of supporting bioprinting modalities and bioprintability, cell viability and proliferation, biomimicry, resolution, affordability, scalability, practicality, mechanical and structural integrity, bioprinting and post-bioprinting maturation times, tissue fusion and formation post-implantation, degradation characteristics, commercial availability, immune-compatibility, and application areas. The paper then discusses current limitations of bioink materials and presents the future prospects to the reader.
Collapse
Affiliation(s)
- Monika Hospodiuk
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Madhuri Dey
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Department of Chemistry, Penn State University, University Park, PA, 16802, USA
| | - Donna Sosnoski
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Materials Research Institute, Penn State University, University Park, PA 16802, USA; Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules 2016; 18:1-26. [PMID: 27966916 DOI: 10.1021/acs.biomac.6b01619] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomechanical performance of functional cartilage is executed by the exclusive anisotropic composition and spatially varying intricate architecture in articulating ends of diarthrodial joint. Osteochondral tissue constituting the articulating ends comprise superfical soft cartilage over hard subchondral bone sandwiching interfacial soft-hard tissue. The shock-absorbent, lubricating property of cartilage and mechanical stability of subchondral bone regions are rendered by extended chemical structure of glycosaminoglycans and mineral deposition, respectively. Extracellular matrix glycosaminoglycans analogous polysaccharides are major class of hydrogels investigated for restoration of functional cartilage. Recently, injectable hydrogels have gained momentum as it offers patient compliance, tunable mechanical properties, cell deliverability, and facile administration at physiological condition with long-term functionality and hyaline cartilage construction. Interestingly, facile modifiable functional groups in carbohydrate polymers impart tailorability of desired physicochemical properties and versatile injectable chemistry for the development of highly potent biomimetic in situ forming scaffold. The scaffold design strategies have also evolved from single component to bi- or multilayered and graded constructs with osteogenic properties for deep subchondral regeneration. This review highlights the significance of polysaccharide structure-based functions in engineering cartilage tissue, injectable chemistries, strategies for combining analogous matrices with cells/stem cells and biomolecules and multicomponent approaches for osteochondral mimetic constructs. Further, the rheology and precise spatiotemporal positioning of cells in hydrogel bioink for rapid prototyping of complex three-dimensional anisotropic cartilage have also been discussed.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Anuradha Subramanian
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| |
Collapse
|
16
|
Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomater Sci 2016; 4:734-67. [PMID: 26923076 DOI: 10.1039/c6bm00068a] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.
Collapse
Affiliation(s)
- Sandra Camarero-Espinosa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
17
|
Saltz A, Kandalam U. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review. J Biomed Mater Res A 2016; 104:1276-84. [PMID: 26826060 DOI: 10.1002/jbm.a.35647] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 01/01/2023]
Abstract
Craniofacial bone is a complex structure with an intricate anatomical and physiological architecture. The defects that exist in this region therefore require a precise control of osteogenesis in their reconstruction. Unlike traditional surgical intervention, tissue engineering techniques mediate bone development with limited postoperative risk and cost. Alginate stands as the premier polymer in bone repair because of its mild ionotropic gelation and excellent biocompatibility, biodegradability, and injectability. Alginate microcarriers are candidates of choice to mediate cells and accommodate into 3-D environment. Several studies reported the use of alginate microcarriers for delivering cells, drugs, and growth factors. This review will explore the potential use of alginate microcarrier for stem cell systems and its application in craniofacial bone tissue engineering.
Collapse
Affiliation(s)
- Adam Saltz
- Nova Southeastern University College of Dental Medicine, Fort Lauderdale, Florida, 33328
| | - Umadevi Kandalam
- Nova Southeastern University College of Dental Medicine, Fort Lauderdale, Florida, 33328
| |
Collapse
|
18
|
Dashtdar H, Murali MR, Abbas AA, Suhaeb AM, Selvaratnam L, Tay LX, Kamarul T. PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects. Knee Surg Sports Traumatol Arthrosc 2015; 23:1368-1377. [PMID: 24146054 DOI: 10.1007/s00167-013-2723-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/08/2013] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate whether mesenchymal stem cells (MSCs) seeded in novel polyvinyl alcohol (PVA)-chitosan composite hydrogel can provide comparable or even further improve cartilage repair outcomes as compared to previously established alginate-transplanted models. METHODS Medial femoral condyle defect was created in both knees of twenty-four mature New Zealand white rabbits, and the animals were divided into four groups containing six animals each. After 3 weeks, the right knees were transplanted with PVA-chitosan-MSC, PVA-chitosan scaffold alone, alginate-MSC construct or alginate alone. The left knee was kept as untreated control. Animals were killed at the end of 6 months after transplantation, and the cartilage repair was assessed through Brittberg morphological score, histological grading by O'Driscoll score and quantitative glycosaminoglycan analysis. RESULTS Morphological and histological analyses showed significant (p < 0.05) tissue repair when treated with PVA-chitosan-MSC or alginate MSC as compared to the scaffold only and untreated control. In addition, safranin O staining and the glycosaminoglycan (GAG) content were significantly higher (p < 0.05) in MSC treatment groups than in scaffold-only or untreated control group. No significant difference was observed between the PVA-chitosan-MSC- and alginate-MSC-treated groups. CONCLUSION PVA-chitosan hydrogel seeded with mesenchymal stem cells provides comparable treatment outcomes to that of previously established alginate-MSC construct implantation. This study supports the potential use of PVA-chitosan hydrogel seeded with MSCs for clinical use in cartilage repair such as traumatic injuries.
Collapse
Affiliation(s)
- Havva Dashtdar
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Malliga Raman Murali
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Azlina Amir Abbas
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Abdulrazzaq Mahmod Suhaeb
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Lakshmi Selvaratnam
- School of Medicine and Health Sciences, Monash University, Sunway Campus, Selangor, Malaysia
| | - Liang Xin Tay
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia.
| |
Collapse
|
19
|
Li B, Wang X, Wang Y, Gou W, Yuan X, Peng J, Guo Q, Lu S. Past, present, and future of microcarrier-based tissue engineering. J Orthop Translat 2015; 3:51-57. [PMID: 30035040 PMCID: PMC5982391 DOI: 10.1016/j.jot.2015.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/23/2015] [Indexed: 12/18/2022] Open
Abstract
The top issue in tissue engineering is how to obtain more seed cells quickly and to preserve their characteristic morphology during in vitro expansion culture of cells. Microcarriers can help to amplify cell numbers and maintain the appropriate phenotype for tissue repair and restoration of function. In addition, microtissue with cell microcarriers can be used to repair diseased tissues or organs. This review introduces the materials used for, and classification of, microcarriers and the improvements in, and potential applications of, microtissues with cell microcarriers in tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | | | | |
Collapse
|
20
|
Mellor LF, Baker TL, Brown RJ, Catlin LW, Oxford JT. Optimal 3D culture of primary articular chondrocytes for use in the rotating wall vessel bioreactor. ACTA ACUST UNITED AC 2014; 85:798-804. [PMID: 25199120 DOI: 10.3357/asem.3905.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Reliable culturing methods for primary articular chondrocytes are essential to study the effects of loading and unloading on joint tissue at the cellular level. Due to the limited proliferation capacity of primary chondrocytes and their tendency to dedifferentiate in conventional culture conditions, long-term culturing conditions of primary chondrocytes can be challenging. The goal of this study was to develop a suspension culturing technique that not only would retain the cellular morphology, but also maintain the gene expression characteristics of primary articular chondrocytes. METHODS Three-dimensional culturing methods were compared and optimized for primary articular chondrocytes in the rotating wall vessel bioreactor, which changes the mechanical culture conditions to provide a form of suspension culture optimized for low shear and turbulence. We performed gene expression analysis and morphological characterization of cells cultured in alginate beads, Cytopore-2 microcarriers, primary monolayer culture, and passaged monolayer cultures using reverse transcription-PCR and laser scanning confocal microscopy. RESULTS Primary chondrocytes grown on Cytopore-2 microcarriers maintained the phenotypical morphology and gene expression pattern observed in primary bovine articular chondrocytes, and retained these characteristics for up to 9 d. DISCUSSION Our results provide a novel and alternative culturing technique for primary chondrocytes suitable for studies that require suspension such as those using the rotating wall vessel bioreactor. In addition, we provide an alternative culturing technique for primary chondrocytes that can impact future mechanistic studies of osteoarthritis progression, treatments for cartilage damage and repair, and cartilage tissue engineering.
Collapse
|
21
|
Delbari A, Fadaei F, Salehi M, Farahani RM, Piryaei A, Heidari MH, Nourozian M, Mansouri V. A simple method for generating small calcium-alginate beads by syringe. J Histotechnol 2014. [DOI: 10.1179/2046023614y.0000000048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
SEA antagonizes the imatinib-meditated inhibitory effects on T cell activation via the TCR signaling pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:682010. [PMID: 24524084 PMCID: PMC3909973 DOI: 10.1155/2014/682010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/26/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023]
Abstract
The BCR-ABL kinase inhibitor imatinib is highly effective in the treatment of chronic myeloid leukemia (CML). However, long-term imatinib treatment induces immunosuppression, which is mainly due to T cell dysfunction. Imatinib can reduce TCR-triggered T cell activation by inhibiting the phosphorylation of tyrosine kinases such as Lck, ZAP70, LAT, and PLCγ1 early in the TCR signaling pathway. The purpose of this study was to investigate whether the superantigen SEA, a potent T cell stimulator, can block the immunosuppressive effects of imatinib on T cells. Our data show that the exposure of primary human T cells and Jurkat cells to SEA for 24 h leads to the upregulation of the Lck and ZAP70 proteins in a dose-dependent manner. T cells treated with SEA prior to TCR binding had increased the tyrosine phosphorylation of Lck, ZAP70, and PLCγ1. Pretreatment with SEA prevents the inhibitory effects of imatinib on TCR signaling, which leads to T cell proliferation and IL-2 production. It is conceivable that SEA antagonizes the imatinib-mediated inhibition of T cell activation and proliferation through the TCR signaling pathway.
Collapse
|
23
|
Peng H, Liu X, Wang R, Jia F, Dong L, Wang Q. Emerging nanostructured materials for musculoskeletal tissue engineering. J Mater Chem B 2014; 2:6435-6461. [DOI: 10.1039/c4tb00344f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the recent developments in the preparation and applications of nanostructured materials for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
- Department of Pharmaceutics
- Daqing Campus
| | - Xunpei Liu
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
| | - Ran Wang
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing, China
| | - Feng Jia
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering
- Iowa State University
- Ames, USA
| | - Qun Wang
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames, USA
- Department of Civil, Construction and Environmental Engineering
- Iowa State University
| |
Collapse
|
24
|
Lau TT, Neo JRE, Wang DA. Hydrogel-mediated formation of living cartilage template for endochondral initiation. POLYM INT 2013. [DOI: 10.1002/pi.4648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ting Ting Lau
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457
| | - Jing Rui Evelyn Neo
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457
| |
Collapse
|
25
|
Wongdee K, Thonapan N, Saengamnart W, Krishnamra N, Charoenphandhu N. Bromocriptine modulates the expression of PTHrP receptor, Indian hedgehog, and Runx2 proteins in the growth plate of lactating rats. Mol Cell Biochem 2013; 381:191-9. [DOI: 10.1007/s11010-013-1702-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
|