1
|
Maier K, Helkin A, Stein JJ, Yuan HL, Seymour K, Ryabtsev B, Iwuchukwu C, Gahtan V. Short-Term and Long-Term Fluvastatin Inhibit Effects of Thrombospondin-1 on Human Vascular Smooth Muscle Cells. Vasc Endovascular Surg 2025; 59:39-46. [PMID: 39235354 DOI: 10.1177/15385744241279113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Vascular smooth muscle cells are important in intimal hyperplasia. Thrombospondin-1 is a matricellular protein involved in the vascular injury response. Statins are cholesterol lowering drugs that have beneficial cardiovascular effects. Statis have been shown to inhibit smooth muscle migration through the mevalonate pathway. This effect is thought to be mediated by small G protein Ras and Rho turnover which requires many hours. While many patients undergoing treatment for vascular disease are on statins, many are not. Thus immediate pretreatment with statins before surgery may be beneficial. We hypothesized that statins have effects independent of the mevalonate pathway and thus have an immediate effect. METHODS Human vascular smooth muscle cells were pretreated for 20 h (long-term) or 20 min (short-term) with fluvastatin, or mevalonolactone plus fluvastatin. Thrombospondin-1-induced migration, activation of p42/p44 extracellular signal-regulated kinase, c-Src, focal adhesion kinase and PI3 kinase was determined. The effect of fluvastatin on thrombospondin-1-induced expression of THBS1, FOS, HAS2 and TGFB2 was examined. RESULTS Both treatments inhibited thrombospondin-1-induced chemotaxis back to the control group. Mevalonolactone reversed the long-term statin effect by increasing migration but had no effect on the short-term statin response. p42/p44 extracellular signal-regulated kinase was activated by thrombospondin-1 and both treatments augmented activation. Neither treatment affected c-Src activity, but both inhibited focal adhesion kinase and PI3 kinase activity. Only long-term statin treatment inhibited THBS1 expression while both treatments inhibited FOS and TGFB2 expression. Neither treatment affected HAS2. FOS knockdown inhibited thrombospondin-1-induced HAS2 but not TGFβ2 gene expression. CONCLUSION Long-term fluvastatin inhibited thrombospondin-1-induced chemotaxis through the mevalonate pathway while short-term fluvastatin inhibited chemotaxis through an alternate mechanism. Short-term stains have immediate effects independent of the mevalonate pathway. Acute local treatment with statins followed by longer term therapy may limit the vascular response to injury.
Collapse
MESH Headings
- Fluvastatin/pharmacology
- Humans
- Thrombospondin 1/metabolism
- Thrombospondin 1/genetics
- Fatty Acids, Monounsaturated/pharmacology
- Mevalonic Acid/pharmacology
- Mevalonic Acid/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Time Factors
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cell Movement/drug effects
- Cells, Cultured
- Signal Transduction/drug effects
- Indoles/pharmacology
- src-Family Kinases/metabolism
- Proto-Oncogene Proteins c-fos/metabolism
- Proto-Oncogene Proteins c-fos/genetics
- Enzyme Activation
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Focal Adhesion Kinase 1/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
Collapse
Affiliation(s)
- Kristopher Maier
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Alex Helkin
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jeffrey J Stein
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Helen L Yuan
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Keri Seymour
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Boris Ryabtsev
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chinenye Iwuchukwu
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Vivian Gahtan
- Department of Veterans Affairs Healthcare Network Upstate New York at Syracuse, Syracuse, NY, USA
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
2
|
Hu J, Qin C, Xu Y, Liu X, Wei X, Wu J, Zhao X, Chen C, Lin Y. Decreased thrombospondin-1 impairs endometrial stromal decidualization in unexplained recurrent spontaneous abortion†. Biol Reprod 2024; 111:448-462. [PMID: 38780057 DOI: 10.1093/biolre/ioae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Inappropriate endometrial stromal decidualization has been implied as an important reason of many pregnancy-related complications, such as unexplained recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction. Here, we observed that thrombospondin-1, an adhesive glycoprotein, was significantly downregulated in endometrial decidual cells from patients with unexplained recurrent spontaneous abortion. The immortalized human endometrial stromal cell line was used to investigate the possible THBS1-mediated regulation of decidualization. In vitro experiments found that the expression level of THBS1 increased with the normal decidualization process. Knockdown of THBS1 could decrease the expression levels of prolactin and insulin-like growth factor binding protein-1, two acknowledged human decidualization markers, whereas THBS1 overexpression could reverse these effects. The RNA sequencing results demonstrated that the extracellular regulated protein kinases signaling pathway was potentially affected by the knockdown of THBS1. We further confirmed that the regulation of THBS1 on decidualization was achieved through the ERK signaling pathway by the treatment of inhibitors. Moreover, knockdown of THBS1 in pregnant mice could impair decidualization and result in an increased fetus resorption rate. Altogether, our study demonstrated a crucial role of THBS1 in the pathophysiological process of unexplained recurrent spontaneous abortion and provided some new insights into the research of pregnancy-related complications.
Collapse
Affiliation(s)
- Jianing Hu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Chuanmei Qin
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Yichi Xu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Xueqing Liu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Xiaowei Wei
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200030, China
| | - Jiayi Wu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou 510080, China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | - Yi Lin
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200030, China
| |
Collapse
|
3
|
Wei ZX, Cai XX, Fei YD, Wang Q, Hu XL, Li C, Hou JW, Yang YL, Wang YP, Li YG. Ntsr1 contributes to pulmonary hypertension by enhancing endoplasmic reticulum stress via JAK2-STAT3-Thbs1 signaling. Transl Res 2024; 269:64-75. [PMID: 38395391 DOI: 10.1016/j.trsl.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Pulmonary hypertension (PH) is a severe clinical syndrome with pulmonary vascular remodeling and poor long-term prognosis. Neurotensin receptor 1 (Ntsr1), serve as one of the G protein-coupled receptors (GPCRs), implicates in various biological processes, but the potential effects of Ntsr1 in PH development are unclear. The Sugen/Hypoxia (SuHx) or monocrotaline (MCT) induced rat PH model was used in our study and the PH rats showed aggravated pulmonary artery remodeling and increased right ventricular systolic pressure (RVSP). Our results revealed that Ntsr1 induced endoplasmic reticulum (ER) stress response via ATF6 activation contributed to the development of PH. Moreover, RNA-sequencing (RNA-seq) and phosphoproteomics were performed and the Ntsr1-JAK2-STAT3-thrombospondin 1 (Thbs1)-ATF6 signaling was distinguished as the key pathway. In vitro, pulmonary artery smooth muscle cells (PASMCs) under hypoxia condition showed enhanced proliferation and migration properties, which could be inhibited by Ntsr1 knockdown, JAK2 inhibitor (Fedratinib) treatment, STAT3 inhibitior (Stattic) treatment, Thbs1 knockdown or ATF6 knockdown. In addition, adeno-associated virus 1 (AAV1) were used to knockdown the expression of Ntsr1, Thbs1 or ATF6 in rats and reversed the phenotype of PH. In summary, our results reveal that Ntsr1-JAK2-STAT3-Thbs1 pathway can induce enhanced ER stress via ATF6 activation and increased PASMC proliferation and migration capacities, which can be mechanism of the pulmonary artery remodeling and PH. Targeting Ntsr1 might be a novel therapeutic strategy to ameliorate PH.
Collapse
Affiliation(s)
- Zhi-Xing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xing-Xing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yu-Dong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Qian Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xiao-Liang Hu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Cheng Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Jian-Wen Hou
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu-Li Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yue-Peng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
4
|
Garoffolo G, Ruiter MS, Piola M, Brioschi M, Thomas AC, Agrifoglio M, Polvani G, Coppadoro L, Zoli S, Saccu C, Spinetti G, Banfi C, Fiore GB, Madeddu P, Soncini M, Pesce M. Coronary artery mechanics induces human saphenous vein remodelling via recruitment of adventitial myofibroblast-like cells mediated by Thrombospondin-1. Am J Cancer Res 2020; 10:2597-2611. [PMID: 32194822 PMCID: PMC7052885 DOI: 10.7150/thno.40595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
Rationale: Despite the preferred application of arterial conduits, the greater saphenous vein (SV) remains indispensable for coronary bypass grafting (CABG), especially in multi-vessel coronary artery disease (CAD). The objective of the present work was to address the role of mechanical forces in the activation of maladaptive vein bypass remodeling, a process determining progressive occlusion and recurrence of ischemic heart disease. Methods: We employed a custom bioreactor to mimic the coronary shear and wall mechanics in human SV vascular conduits and reproduce experimentally the biomechanical conditions of coronary grafting and analyzed vein remodeling process by histology, histochemistry and immunofluorescence. We also subjected vein-derived cells to cyclic uniaxial mechanical stimulation in culture, followed by phenotypic and molecular characterization using RNA and proteomic methods. We finally validated our results in vitro and using a model of SV carotid interposition in pigs. Results: Exposure to pulsatile flow determined a remodeling process of the vascular wall involving reduction in media thickness. Smooth muscle cells (SMCs) underwent conversion from contractile to synthetic phenotype. A time-dependent increase in proliferating cells expressing mesenchymal (CD44) and early SMC (SM22α) markers, apparently recruited from the SV adventitia, was observed especially in CABG-stimulated vessels. Mechanically stimulated SMCs underwent transition from contractile to synthetic phenotype. MALDI-TOF-based secretome analysis revealed a consistent release of Thrombospondin-1 (TSP-1), a matricellular protein involved in TGF-β-dependent signaling. TSP-1 had a direct chemotactic effect on SV adventitia resident progenitors (SVPs); this effects was inhibited by blocking TSP-1 receptor CD47. The involvement of TSP-1 in adventitial progenitor cells differentiation and graft intima hyperplasia was finally contextualized in the TGF-β-dependent pathway, and validated in a saphenous vein into carotid interposition pig model. Conclusions: Our results provide the evidence of a matricellular mechanism involved in the human vein arterialization process controlled by alterations in tissue mechanics, and open the way to novel potential strategies to block VGD progression based on targeting cell mechanosensing-related effectors.
Collapse
|
5
|
Kuebler WM. What mediates the effects of thrombospondin-1 in pulmonary hypertension? New evidence for a dual-pronged role of CD47. Cardiovasc Res 2016; 113:3-5. [PMID: 28069696 DOI: 10.1093/cvr/cvw232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitaetsmedizin Berlin, Charité - platz 1, 10117 Berlin, Germany; The Keenan Research Centre for Biomedical Science at St. Michael's, 30 Bond Street, M5B 1W8, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada; and Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
6
|
Thrombospondin-1 differentially regulates microRNAs in vascular smooth muscle cells. Mol Cell Biochem 2016; 412:111-7. [PMID: 26728995 DOI: 10.1007/s11010-015-2614-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/08/2015] [Indexed: 01/10/2023]
Abstract
Thrombospondin-1 (TSP-1) is an important regulator of vascular smooth muscle cell (VSMC) physiology and gene expression. MicroRNAs (microRNA), small molecules that regulate protein translation, have emerged as potent regulators of cell function. MicroRNAs have been shown to be involved in intimal hyperplasia, atherosclerosis, and upregulated in the vasculature in diabetes. The purpose of this study was to identify microRNAs regulated by TSP-1 in vascular smooth muscle cells (VSMCs). Human VSMCs were treated for 6 h with basal media or TSP-1 both supplemented with 0.2% FBS. Cells were then snap frozen and RNA extracted. An Affymetrix GeneChip microRNA array analysis was performed in triplicate on three separate collections. Confirmatory qrtPCR was performed. Data were analyzed by ANOVA or t test, with significance set at p < 0.05. MicroRNAs identified were subjected to KEGG pathway analysis using the DIANA tools miRPath online tool. TSP-1 upregulated 22 microRNAs and downregulated 18 microRNAs in VSMCs (p < 0.05). The most upregulated microRNA was miR-512-3p (45.12 fold). The microRNA most downregulated by TSP-1 was miR-25-5p, which was decreased by 9.61. Of note, five members of the mir-17-92 cluster were downregulated. KEGG analysis revealed that thirty-three cellular signaling pathways were impacted by these microRNAs and that nine pathways were relevant to vascular disease. MicroRNAs regulate protein expression at the level of translation and may represent a significant mechanism by which TSP-1 regulates VSMC function. Several of the microRNAs identified have a role in vascular function. The miR-17-92 cluster family, which was found to exhibit reduced expression in this study, is known to be involved in angiogenesis and vascular function. TSP-1 regulates multiple microRNAs in VSMCs adding a new layer of complexity to TSP-1 regulation of VSMC function.
Collapse
|