1
|
Du BB, Shi HT, Xiao LL, Li YP, Yao R, Liang C, Tian XX, Yang LL, Kong LY, Du JQ, Zhang ZZ, Zhang YZ, Huang Z. Melanoma differentiation-associated protein 5 prevents cardiac hypertrophy via apoptosis signal-regulating kinase 1-c-Jun N-terminal kinase/p38 signaling. Int J Biol Macromol 2024; 264:130542. [PMID: 38432272 DOI: 10.1016/j.ijbiomac.2024.130542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Pathological cardiac hypertrophy (CH) is driven by maladaptive changes in myocardial cells in response to pressure overload or other stimuli. CH has been identified as a significant risk factor for the development of various cardiovascular diseases, ultimately resulting in heart failure. Melanoma differentiation-associated protein 5 (MDA5), encoded by interferon-induced with helicase C domain 1 (IFIH1), is a cytoplasmic sensor that primarily functions as a detector of double-stranded ribonucleic acid (dsRNA) viruses in innate immune responses; however, its role in CH pathogenesis remains unclear. Thus, the aim of this study was to examine the relationship between MDA5 and CH using cellular and animal models generated by stimulating neonatal rat cardiomyocytes with phenylephrine and by performing transverse aortic constriction on mice, respectively. MDA5 expression was upregulated in all models. MDA5 deficiency exacerbated myocardial pachynsis, fibrosis, and inflammation in vivo, whereas its overexpression hindered CH development in vitro. In terms of the underlying molecular mechanism, MDA5 inhibited CH development by promoting apoptosis signal-regulating kinase 1 (ASK1) phosphorylation, thereby suppressing c-Jun N-terminal kinase/p38 signaling pathway activation. Rescue experiments using an ASK1 activation inhibitor confirmed that ASK1 phosphorylation was essential for MDA5-mediated cell death. Thus, MDA5 protects against CH and is a potential therapeutic target.
Collapse
Affiliation(s)
- Bin-Bin Du
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Hui-Ting Shi
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Li-Li Xiao
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Ya-Peng Li
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Rui Yao
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Cui Liang
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiao-Xu Tian
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Lu-Lu Yang
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Ling-Yao Kong
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Jia-Qi Du
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhao-Zhi Zhang
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yan-Zhou Zhang
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhen Huang
- Cardiovascular Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Mao Q, Wu S, Peng C, Peng B, Luo X, Huang L, Zhang H. Interactions between the ERK1/2 signaling pathway and PCAF play a key role in PE‑induced cardiomyocyte hypertrophy. Mol Med Rep 2021; 24:636. [PMID: 34278478 PMCID: PMC8281443 DOI: 10.3892/mmr.2021.12275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiomyocyte hypertrophy is a compensatory phase of chronic heart failure that is induced by the activation of multiple signaling pathways. The extracellular signal-regulated protein kinase (ERK) signaling pathway is an important regulator of cardiomyocyte hypertrophy. In our previous study, it was demonstrated that phenylephrine (PE)-induced cardiomyocyte hypertrophy involves the hyperacetylation of histone H3K9ac by P300/CBP-associated factor (PCAF). However, the upstream signaling pathway has yet to be fully identified. In the present study, the role of the extracellular signal-regulated protein kinase (ERK)1/2 signaling pathway in PE-induced cardiomyocyte hypertrophy was investigated. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. The results showed that phospho-(p-)ERK1/2 interacted with PCAF and modified the pattern of histone H3K9ac acetylation. An ERK inhibitor (U0126) and/or a histone acetylase inhibitor (anacardic acid; AA) attenuated the overexpression of phospho-ERK1/2 and H3K9ac hyperacetylation by inhibiting the expression of PCAF in PE-induced cardiomyocyte hypertrophy. Moreover, U0126 and/or AA could attenuate the overexpression of several biomarker genes related to cardiac hypertrophy (myocyte enhancer factor 2C, atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain) and prevented cardiomyocyte hypertrophy. These results revealed a novel mechanism in that AA protects against PE-induced cardiomyocyte hypertrophy in mice via the ERK1/2 signaling pathway, and by modifying the acetylation of H3K9ac. These findings may assist in the development of novel methods for preventing and treating hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Qian Mao
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuqi Wu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Bohui Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaomei Luo
- Department of Physiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lixin Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Huanting Zhang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
3
|
Nephroprotective Effects of N-Acetylcysteine Amide against Contrast-Induced Nephropathy through Upregulating Thioredoxin-1, Inhibiting ASK1/p38MAPK Pathway, and Suppressing Oxidative Stress and Apoptosis in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8715185. [PMID: 28105252 PMCID: PMC5220479 DOI: 10.1155/2016/8715185] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
Contrast-induced nephropathy (CIN) is a leading cause of hospital-acquired acute kidney injury (AKI) due to apoptosis induced in renal tubular cells. Our previous study demonstrated the novel N-acetylcysteine amide (NACA); the amide form of N-acetyl cysteine (NAC) prevented renal tubular cells from contrast-induced apoptosis through inhibiting p38 MAPK pathway in vitro. In the present study, we aimed to compare the efficacies of NACA and NAC in preventing CIN in a well-established rat model and investigate whether thioredoxin-1 (Trx1) and apoptosis signal-regulating kinase 1 (ASK1) act as the potential activator for p38 MAPK. NACA significantly attenuated elevations of serum creatinine, blood urea nitrogen, and biomarkers of AKI. At equimolar concentration, NACA was more effective than NAC in reducing histological changes of renal tubular injuries. NACA attenuated activation of p38 MAPK signal, reduced oxidative stress, and diminished apoptosis. Furthermore, we demonstrated that contrast exposure resulted in Trx1 downregulation and increased ASK1/p38 MAPK phosphorylation, which could be reversed by NACA and NAC. To our knowledge, this is the first report that Trx1 and ASK1 are involved in CIN. Our study highlights a renal protective role of NACA against CIN through modulating Trx1 and ASK1/p38 MAPK pathway to result in the inhibition of apoptosis among renal cells.
Collapse
|
4
|
Chen M, Qu X, Zhang Z, Wu H, Qin X, Li F, Liu Z, Tian L, Miao J, Shu W. Cross-talk between Arg methylation and Ser phosphorylation modulates apoptosis signal-regulating kinase 1 activation in endothelial cells. Mol Biol Cell 2016; 27:1358-66. [PMID: 26912789 PMCID: PMC4831888 DOI: 10.1091/mbc.e15-10-0738] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
Protein arginine methyltransferase 5 interacts with and methylates apoptosis signal–regulating kinase 1 at arginine residue 89, thereby negatively regulating its activity by promoting the interaction between ASK1 and Akt and thus phosphorylating ASK1 at serine residue 83. We describe a novel functional interaction between ASK1 and PRMT5. We show that PRMT5 interacts with and methylates ASK1 at arginine residue 89 and thereby negatively regulates its activity by promoting the interaction between ASK1 and Akt and thus phosphorylating ASK1 at serine residue 83. Furthermore, the association between ASK1 and Akt is enhanced by VEGF stimulation, and PRMT5 is required for this association. Moreover, PRMT5-mediated ASK1 methylation impaired the H2O2-induced activity of ASK1, and this inhibitory effect of PRMT5 was abolished by replacement of arginine 89 with Trp or depletion of PRMT5 expression by RNA interference. Together the results demonstrate cross-talk between arginine methylation and serine phosphorylation in ASK1.
Collapse
Affiliation(s)
- Ming Chen
- Center for Identification of Chinese Herbal Medicines, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China Tianjin Institute of Hygiene and Environmental Medicine, Tianjin 300050, China
| | - Xiaosheng Qu
- Center for Identification of Chinese Herbal Medicines, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Zhiqing Zhang
- Tianjin Institute of Hygiene and Environmental Medicine, Tianjin 300050, China
| | - Huayu Wu
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| | - Xia Qin
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| | - Fuji Li
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| | - Zhenfang Liu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liyuan Tian
- Department of Specific Diagnosis, General Hospital of Airforce, Beijing 100142, China
| | - Jianhua Miao
- Center for Identification of Chinese Herbal Medicines, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Wei Shu
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|