1
|
Bloskie T, Taiwo OO, Storey KB. Reversible Histone Modifications Contribute to the Frozen and Thawed Recovery States of Wood Frog Brains. Biomolecules 2024; 14:839. [PMID: 39062553 PMCID: PMC11275241 DOI: 10.3390/biom14070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Epigenetic regulation, notably histone post-translational modification (PTM), has emerged as a major transcriptional control of gene expression during cellular stress adaptation. In the present study, we use an acid extraction method to isolate total histone protein and investigate dynamic changes in 23 well-characterized histone methylations/acetylations in the brains of wood frogs subject to 24-h freezing and subsequent 8-h thawed recovery conditions. Our results identify four histone PTMs (H2BK5ac, H3K14ac, H3K4me3, H3K9me2) and three histone proteins (H1.0, H2B, H4) that were significantly (p < 0.05) responsive to freeze-thaw in freeze-tolerant R. sylvatica brains. Two other permissive modifications (H3R8me2a, H3K9ac) also trended downwards following freezing stress. Together, these data are strongly supportive of the proposed global transcriptional states of hypometabolic freeze tolerance and rebounded thawed recovery. Our findings shed light on the intricate interplay between epigenetic regulation, gene transcription and energy metabolism in wood frogs' adaptive response to freezing stress.
Collapse
Affiliation(s)
| | | | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (T.B.); (O.O.T.)
| |
Collapse
|
2
|
Hong YH, Yuan YN, Li K, Storey KB, Zhang JY, Zhang SS, Yu DN. Differential Mitochondrial Genome Expression of Four Hylid Frog Species under Low-Temperature Stress and Its Relationship with Amphibian Temperature Adaptation. Int J Mol Sci 2024; 25:5967. [PMID: 38892163 PMCID: PMC11172996 DOI: 10.3390/ijms25115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Extreme weather poses huge challenges for animals that must adapt to wide variations in environmental temperature and, in many cases, it can lead to the local extirpation of populations or even the extinction of an entire species. Previous studies have found that one element of amphibian adaptation to environmental stress involves changes in mitochondrial gene expression at low temperatures. However, to date, comparative studies of gene expression in organisms living at extreme temperatures have focused mainly on nuclear genes. This study sequenced the complete mitochondrial genomes of five Asian hylid frog species: Dryophytes japonicus, D. immaculata, Hyla annectans, H. chinensis and H. zhaopingensis. It compared the phylogenetic relationships within the Hylidae family and explored the association between mitochondrial gene expression and evolutionary adaptations to cold stress. The present results showed that in D. immaculata, transcript levels of 12 out of 13 mitochondria genes were significantly reduced under cold exposure (p < 0.05); hence, we put forward the conjecture that D. immaculata adapts by entering a hibernation state at low temperature. In H. annectans, the transcripts of 10 genes (ND1, ND2, ND3, ND4, ND4L, ND5, ND6, COX1, COX2 and ATP8) were significantly reduced in response to cold exposure, and five mitochondrial genes in H. chinensis (ND1, ND2, ND3, ND4L and ATP6) also showed significantly reduced expression and transcript levels under cold conditions. By contrast, transcript levels of ND2 and ATP6 in H. zhaopingensis were significantly increased at low temperatures, possibly related to the narrow distribution of this species primarily at low latitudes. Indeed, H. zhaopingensis has little ability to adapt to low temperature (4 °C), or maybe to enter into hibernation, and it shows metabolic disorder in the cold. The present study demonstrates that the regulatory trend of mitochondrial gene expression in amphibians is correlated with their ability to adapt to variable climates in extreme environments. These results can predict which species are more likely to undergo extirpation or extinction with climate change and, thereby, provide new ideas for the study of species extinction in highly variable winter climates.
Collapse
Affiliation(s)
- Yue-Huan Hong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Ni Yuan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ke Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jia-Yong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Shu-Sheng Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Dan-Na Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Zhang T, Jia L, Niu Z, Li X, Men S, Jiang L, Ma M, Wang H, Tang X, Chen Q. Comparative transcriptomic analysis delineates adaptation strategies of Rana kukunoris toward cold stress on the Qinghai-Tibet Plateau. BMC Genomics 2024; 25:363. [PMID: 38609871 PMCID: PMC11015565 DOI: 10.1186/s12864-024-10248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cold hardiness is fundamental for amphibians to survive during the extremely cold winter on the Qinghai-Tibet plateau. Exploring the gene regulation mechanism of freezing-tolerant Rana kukunoris could help us to understand how the frogs survive in winter. RESULTS Transcriptome of liver and muscle of R. kukunoris collected in hibernation and spring were assisted by single molecule real-time (SMRT) sequencing technology. A total of 10,062 unigenes of R. kukunoris were obtained, and 9,924 coding sequences (CDS) were successfully annotated. Our examination of the mRNA response to whole body freezing and recover in the frogs revealed key genes concerning underlying antifreeze proteins and cryoprotectants (glucose and urea). Functional pathway analyses revealed differential regulated pathways of ribosome, energy supply, and protein metabolism which displayed a freeze-induced response and damage recover. Genes related to energy supply in the muscle of winter frogs were up-regulated compared with the muscle of spring frogs. The liver of hibernating frogs maintained modest levels of protein synthesis in the winter. In contrast, the liver underwent intensive high levels of protein synthesis and lipid catabolism to produce substantial quantity of fresh proteins and energy in spring. Differences between hibernation and spring were smaller than that between tissues, yet the physiological traits of hibernation were nevertheless passed down to active state in spring. CONCLUSIONS Based on our comparative transcriptomic analyses, we revealed the likely adaptive mechanisms of R. kukunoris. Ultimately, our study expands genetic resources for the freezing-tolerant frogs.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lun Jia
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinying Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengkang Men
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lu Jiang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Storey JM, Li Z, Storey KB. Hypoxia inducible factor-1α responds to freezing, anoxia and dehydration stresses in a freeze-tolerant frog. Cryobiology 2023; 110:79-85. [PMID: 36442660 DOI: 10.1016/j.cryobiol.2022.11.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The wood frog, Rana sylvatica (aka Lithobates sylvaticus) is the main model for studies of natural freeze tolerance among amphibians living in seasonally cold climates. During freezing, ∼65% of total body water can be converted to extracellular ice and this imposes both dehydration and hypoxia/anoxia stresses on cells. The current study analyzed the responses of the alpha subunit of the hypoxia-inducible transcription factor (HIF-1), a crucial oxygen-sensitive regulator of gene expression, to freezing, anoxia or dehydration stresses, examining six tissues of wood frogs (liver, skeletal muscle, brain, heart, kidney, skin). RT-PCR revealed a rapid elevation hif-1α transcript levels within 2 h of freeze initiation in both liver and brain and elevated levels of both mRNA and protein in liver and muscle after 24 h frozen. However, both transcript and protein levels reverted to control values after thawing except for HIF-1 protein in liver that dropped to ∼60% of control. Independent exposures of wood frogs to anoxia or dehydration stresses (two components of freezing) also triggered upregulation of hif-1α transcripts and/or HIF-1α protein in liver and kidney with variable responses in other tissues. The results show active modulation of HIF-1 in response to freezing, anoxia and dehydration stresses and implicate this transcription factor as a contributor to the regulation of metabolic adaptations needed for long term survival of wood frogs in the ischemic frozen state.
Collapse
Affiliation(s)
- Janet M Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Zhenhong Li
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
5
|
Al-Attar R, Storey KB. Lessons from nature: Leveraging the freeze-tolerant wood frog as a model to improve organ cryopreservation and biobanking. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110747. [PMID: 35460874 DOI: 10.1016/j.cbpb.2022.110747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
The freeze-tolerant wood frog, Rana sylvatica, is one of the very few vertebrate species known to endure full body freezing in winter and thaw in early spring without any significant sign of damage. Once frozen, wood frogs show no cardiac or lung activity, brain function, or physical movement yet resume full physiological and biochemical functions within hours after thawing. The miraculous ability to tolerate such extreme stresses makes wood frogs an attractive model for identifying the molecular mechanisms that can promote freeze/thaw endurance. Recapitulating these pro-survival strategies in transplantable human cells and organs could improve viability post-thaw leading to better post-transplant outcomes, in addition to providing more time for adequate distribution of these transplantable materials across larger geographical areas. Indeed, several laboratories are beginning to mimic the pro-survival responses observed in wood frogs to preservation of human cells, tissues and organs and, to date, a few trials have been successful in extending preservation time prior to transplantation. In this review, we discuss the biology of the freeze-tolerant wood frog, current advances in biobanking based on these animals, and extend our discussion to future prospects for cryopreservation as an aid to regenerative medicine.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
Ingelson-Filpula WA, Storey KB. MicroRNA biogenesis proteins follow tissue-dependent expression during freezing in Dryophytes versicolor. J Comp Physiol B 2022; 192:611-622. [PMID: 35748902 DOI: 10.1007/s00360-022-01444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Grey tree frogs (Dryophytes versicolor) have the remarkable ability to endure full-body freezing over the winter, with up to 42% of total body water converted into extracellular ice. Survival is aided by metabolic rate depression that greatly reduces tissue energy costs over the winter. Post-transcriptional controls on gene expression which include miRNA regulation of gene transcripts can aid implementation of the reversible changes required for freeze tolerance, since miRNAs are ideal for facilitating the rapid metabolic reorganization needed for this process. The energy cost for synthesizing new miRNAs is low, and miRNAs' ability to target more than one mRNA transcript (and vice versa) allows a wide versatility in their capability for metabolic restructuring. Western immunoblotting was used to examine protein expression levels of members of the miRNA biogenesis pathway in D. versicolor liver, skeletal muscle, and kidney. Four of these proteins (Dicer, Drosha, Trbp, Xpo5) were upregulated in liver of frozen frogs, suggesting enhanced capacity for miRNA biogenesis, whereas expression of four proteins in frozen muscle (Ago1, Ago2, Dgcr8, Xpo5) and six proteins in kidney (Ago1, Ago2, Ago3, Ago4, Dgcr8, Ran-GTP) were downregulated, indicating an opposite trend. Overall, the data show that miRNA biosynthesis is altered during freezing and differentially regulated across tissues. We suggest that miRNAs are central for the freeze tolerance strategy developed by D. versicolor, and future research will expound upon specific miRNAs and their roles in mediating responses to freezing stress.
Collapse
Affiliation(s)
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
7
|
Jin WT, Guan JY, Dai XY, Wu GJ, Zhang LP, Storey KB, Zhang JY, Zheng RQ, Yu DN. Mitochondrial gene expression in different organs of Hoplobatrachus rugulosus from China and Thailand under low-temperature stress. BMC ZOOL 2022; 7:24. [PMID: 37170336 PMCID: PMC10127437 DOI: 10.1186/s40850-022-00128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hoplobatrachus rugulosus (Anura: Dicroglossidae) is distributed in China and Thailand and the former can survive substantially lower temperatures than the latter. The mitochondrial genomes of the two subspecies also differ: Chinese tiger frogs (CT frogs) display two identical ND5 genes whereas Thai tiger frogs (TT frogs) have two different ND5 genes. Metabolism of ectotherms is very sensitive to temperature change and different organs have different demands on energy metabolism at low temperatures. Therefore, we conducted studies to understand: (1) the differences in mitochondrial gene expression of tiger frogs from China (CT frogs) versus Thailand (TT frogs); (2) the differences in mitochondrial gene expression of tiger frogs (CT and TT frogs) under short term 24 h hypothermia exposure at 25 °C and 8 °C; (3) the differences in mitochondrial gene expression in three organs (brain, liver and kidney) of CT and TT frogs.
Results
Utilizing RT-qPCR and comparing control groups at 25 °C with low temperature groups at 8 °C, we came to the following results. (1) At the same temperature, mitochondrial gene expression was significantly different in two subspecies. The transcript levels of two identical ND5 of CT frogs were observed to decrease significantly at low temperatures (P < 0.05) whereas the two different copies of ND5 in TT frogs were not. (2) Under low temperature stress, most of the genes in the brain, liver and kidney were down-regulated (except for COI and ATP6 measured in brain and COI measured in liver of CT frogs). (3) For both CT and TT frogs, the changes in overall pattern of mitochondrial gene expression in different organs under low temperature and normal temperature was brain > liver > kidney.
Conclusions
We mainly drew the following conclusions: (1) The differences in the structure and expression of the ND5 gene between CT and TT frogs could result in the different tolerances to low temperature stress. (2) At low temperatures, the transcript levels of most of mitochondrial protein-encoding genes were down-regulated, which could have a significant effect in reducing metabolic rate and supporting long term survival at low temperatures. (3) The expression pattern of mitochondrial genes in different organs was related to mitochondrial activity and mtDNA replication in different organs.
Collapse
|
8
|
Le Tri D, Childers CL, Adam MK, Ben RN, Storey KB, Biggar KK. Characterization of ice recrystallization inhibition activity in the novel freeze-responsive protein Fr10 from freeze-tolerant wood frogs, Rana sylvatica. J Therm Biol 2019; 84:426-430. [DOI: 10.1016/j.jtherbio.2019.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/09/2019] [Accepted: 07/27/2019] [Indexed: 11/26/2022]
|
9
|
Storey JM, Storey KB. In defense of proteins: Chaperones respond to freezing, anoxia, or dehydration stress in tissues of freeze tolerant wood frogs. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:392-402. [PMID: 31276323 DOI: 10.1002/jez.2306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/02/2023]
Abstract
Wood frogs (Rana sylvatica LeConte) are the major model for studies of natural freeze tolerance by ectothermic vertebrates. Multiple biochemical adaptations support winter freezing survival but, to date, the protective role of chaperone proteins has received little attention. The present study analyzes responses to freezing, anoxia or dehydration exposures and recovery from these stresses by chaperone proteins in six wood frog organs: Five heat shock proteins (Hsc70, Hsp110, Hsp60, Hsp40, and Hsp10) and two glucose-regulated proteins (Grp78 and Grp94) were assessed. Hsc70 was upregulated in liver, muscle, heart and kidney (1.5-2.0 fold) during freezing and levels of its partner proteins also rose (Hsp110 in three tissues and Hsp40 in four tissues), these responses aligning most closely with comparable responses to anoxia rather than to dehydration. The resident chaperones of the endoplasmic reticulum (Grp78 and Grp94) also rose during freezing in liver and muscle (1.4-1.8 fold) but were suppressed in heart and skin, patterns that generally differed from responses to anoxia or dehydration. Elevated GRPs in liver may support the production and secretion of novel freeze responsive proteins. Increased levels of mitochondrial Hsp60 and Hsp10 (1.5-2.2 fold) occurred in most tissues during freezing and generally mimicked responses to anoxia. Overall, this study indicates that increased levels of chaperone proteins resident in multiple subcellular compartments contribute to stabilizing the cellular proteome during whole body freezing of wood frogs. These responses are probably derived from pre-existing amphibian defenses for stabilizing the proteome under environmental low oxygen or dehydration stresses.
Collapse
Affiliation(s)
- Janet M Storey
- Department of Biology, Carleton University, Ottawa, Canada
| | | |
Collapse
|
10
|
Costanzo JP. Overwintering adaptations and extreme freeze tolerance in a subarctic population of the wood frog, Rana sylvatica. J Comp Physiol B 2018; 189:1-15. [PMID: 30390099 DOI: 10.1007/s00360-018-1189-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
The terrestrially hibernating wood frog (Rana sylvatica) is well-known for its iconic freeze tolerance, an overwintering adaptation that has received considerable investigation over the past 35 years. Virtually, all of this research has concerned frogs indigenous to the temperate regions of its broad range within North America. However, recent investigations have shown that frogs of subarctic populations are extremely cold hardy, being capable of surviving freezing for longer periods and at much lower temperatures as compared to conspecifics from temperate regions. Their exceptional freeze tolerance is partly supported by an enhanced cryoprotectant system that uses very high levels of urea and glucose to limit ice formation, regulate metabolism, and protect macromolecules and cellular structures from freezing/thawing stresses. In the weeks before they begin hibernating, northern frogs undertake radical physiological transitions, such as depletion of fat stores and catabolism of muscle protein, that prime the cryoprotectant system by accruing urea and stockpiling glycogen from which glucose is mobilized during freezing. Concentrations of cryoprotectants ultimately achieved in Alaskan frogs when freezing occurs vary among tissues but generally are higher than those of frogs inhabiting milder climates. This review summarizes the molecular, biochemical, and physiological adaptations permitting this northern phenotype to survive the long and harsh winters of the region.
Collapse
Affiliation(s)
- Jon P Costanzo
- Department of Biology, Miami University, 45056, Oxford, OH, USA.
| |
Collapse
|
11
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Al-Attar R, Zhang Y, Storey KB. Osmolyte regulation by TonEBP/NFAT5 during anoxia-recovery and dehydration-rehydration stresses in the freeze-tolerant wood frog ( Rana sylvatica). PeerJ 2017; 5:e2797. [PMID: 28133564 PMCID: PMC5251939 DOI: 10.7717/peerj.2797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/15/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The wood frog, Rana sylvatica, tolerates freezing as a means of winter survival. Freezing is considered to be an ischemic/anoxic event in which oxygen delivery is significantly impaired. In addition, cellular dehydration occurs during freezing because water is lost to extracellular compartments in order to promote freezing. In order to prevent severe cell shrinkage and cell death, it is important for the wood frog to have adaptive mechanisms for osmoregulation. One important mechanism of cellular osmoregulation occurs through the cellular uptake/production of organic osmolytes like sorbitol, betaine, and myo-inositol. Betaine and myo-inositol are transported by the proteins BGT-1 and SMIT, respectively. Sorbitol on the other hand, is synthesized inside the cell by the enzyme aldose reductase. These three proteins are regulated at the transcriptional level by the transcription factor, NFAT5/TonEBP. Therefore, the objective of this study was to elucidate the role of NFAT5/TonEBP in regulating BGT-1, SMIT, and aldose reductase, during dehydration and anoxia in the wood frog muscle, liver, and kidney tissues. METHODS Wood frogs were subjected to 24 h anoxia-4 h recovery and 40% dehydration-full rehydration experiments. Protein levels of NFAT5, BGT-1, SMIT, and aldose reductase were studied using immunoblotting in muscle, liver, and kidney tissues. RESULTS Immunoblotting results demonstrated downregulations in NFAT5 protein levels in both liver and kidney tissues during anoxia (decreases by 41% and 44% relative to control for liver and kidney, respectively). Aldose reductase protein levels also decreased in both muscle and kidney tissues during anoxia (by 37% and 30% for muscle and kidney, respectively). On the other hand, BGT-1 levels increased during anoxia in muscle (0.9-fold compared to control) and kidney (1.1-fold). Under 40% dehydration, NFAT5 levels decreased in liver by 53%. Aldose reductase levels also decreased by 42% in dehydrated muscle, and by 35% in dehydrated liver. In contrast, BGT-1 levels increased by 1.4-fold in dehydrated liver. SMIT levels also increased in both dehydrated muscle and liver (both by 0.8-fold). DISCUSSION Overall, we observed that osmoregulation through an NFAT5-mediated pathway is both tissue- and stress-specific. In both anoxia and dehydration, there appears to be a general reduction in NFAT5 levels resulting in decreased aldose reductase levels, however BGT-1 and SMIT levels still increase in certain tissues. Therefore, the regulation of osmoregulatory genes during dehydration and anoxia occurs beyond the transcriptional level, and it possibly involves RNA processing as well. These novel findings on the osmoregulatory mechanisms utilized by the wood frog advances our knowledge of osmoregulation during anoxia and dehydration. In addition, these findings highlight the importance of using this model to study molecular adaptations during stress.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University , Ottawa , ON , Canada
| | - Yichi Zhang
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University , Ottawa , ON , Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University , Ottawa , ON , Canada
| |
Collapse
|
13
|
Gerber VEM, Wijenayake S, Storey KB. Anti-apoptotic response during anoxia and recovery in a freeze-tolerant wood frog (Rana sylvatica). PeerJ 2016; 4:e1834. [PMID: 27042393 PMCID: PMC4811176 DOI: 10.7717/peerj.1834] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/01/2016] [Indexed: 11/29/2022] Open
Abstract
The common wood frog, Rana sylvatica, utilizes freeze tolerance as a means of winter survival. Concealed beneath a layer of leaf litter and blanketed by snow, these frogs withstand subzero temperatures by allowing approximately 65–70% of total body water to freeze. Freezing is generally considered to be an ischemic event in which the blood oxygen supply is impeded and may lead to low levels of ATP production and exposure to oxidative stress. Therefore, it is as important to selectively upregulate cytoprotective mechanisms such as the heat shock protein (HSP) response and expression of antioxidants as it is to shut down majority of ATP consuming processes in the cell. The objective of this study was to investigate another probable cytoprotective mechanism, anti-apoptosis during oxygen deprivation and recovery in the anoxia tolerant wood frog. In particular, relative protein expression levels of two important apoptotic regulator proteins, Bax and p-p53 (S46), and five anti-apoptotic/pro-survival proteins, Bcl-2, p-Bcl-2 (S70), Bcl-xL, x-IAP, and c-IAP in response to normoxic, 24 Hr anoxic exposure, and 4 Hr recovery stages were assessed in the liver and skeletal muscle using western immunoblotting. The results suggest a tissue-specific regulation of the anti-apoptotic pathway in the wood frog, where both liver and skeletal muscle shows an overall decrease in apoptosis and an increase in cell survival. This type of cytoprotective mechanism could be aimed at preserving the existing cellular components during long-term anoxia and oxygen recovery phases in the wood frog.
Collapse
Affiliation(s)
- Victoria E M Gerber
- Department of Biology, Carleton University, Ottawa, ON, Canada; Current affiliation: Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology and Chemistry, Carleton University , Ottawa, ON , Canada
| |
Collapse
|
14
|
Luu BE, Storey KB. Dehydration triggers differential microRNA expression in Xenopus laevis brain. Gene 2015; 573:64-9. [DOI: 10.1016/j.gene.2015.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/17/2022]
|
15
|
Duman JG. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J Exp Biol 2015; 218:1846-55. [DOI: 10.1242/jeb.116905] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
Ice-binding proteins (IBPs) assist in subzero tolerance of multiple cold-tolerant organisms: animals, plants, fungi, bacteria etc. IBPs include: (1) antifreeze proteins (AFPs) with high thermal hysteresis antifreeze activity; (2) low thermal hysteresis IBPs; and (3) ice-nucleating proteins (INPs). Several structurally different IBPs have evolved, even within related taxa. Proteins that produce thermal hysteresis inhibit freezing by a non-colligative mechanism, whereby they adsorb onto ice crystals or ice-nucleating surfaces and prevent further growth. This lowers the so-called hysteretic freezing point below the normal equilibrium freezing/melting point, producing a difference between the two, termed thermal hysteresis. True AFPs with high thermal hysteresis are found in freeze-avoiding animals (those that must prevent freezing, as they die if frozen) especially marine fish, insects and other terrestrial arthropods where they function to prevent freezing at temperatures below those commonly experienced by the organism. Low thermal hysteresis IBPs are found in freeze-tolerant organisms (those able to survive extracellular freezing), and function to inhibit recrystallization – a potentially damaging process whereby larger ice crystals grow at the expense of smaller ones – and in some cases, prevent lethal propagation of extracellular ice into the cytoplasm. Ice-nucleator proteins inhibit supercooling and induce freezing in the extracellular fluid at high subzero temperatures in many freeze-tolerant species, thereby allowing them to control the location and temperature of ice nucleation, and the rate of ice growth. Numerous nuances to these functions have evolved. Antifreeze glycolipids with significant thermal hysteresis activity were recently identified in insects, frogs and plants.
Collapse
|
16
|
Expression and Characterization of the Novel Gene fr47 during Freezing in the Wood Frog, Rana sylvatica. Biochem Res Int 2015; 2015:363912. [PMID: 26101667 PMCID: PMC4460209 DOI: 10.1155/2015/363912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 11/17/2022] Open
Abstract
The wood frog, Rana sylvatica, has numerous adaptations that allow it to survive freezing of up to 65% of its total body water during the winter. Such adaptations have been found to include the expression of novel freeze responsive genes that are thought to be important for adaptation and survival. In this study, the tissue-specific stress responsive expression of one novel gene, fr47, was assessed in seven wood frog tissues. In response to freezing, the transcript expression of fr47 increased significantly in six tissues: heart, lung, liver, skeletal muscle, kidney, and testes. The expression of fr47 was also strongly upregulated by component stresses of freezing, namely, anoxia and dehydration. A dynamic change in fr47 expression was also observed during tadpole development, with expression low in embryonic stages (Gosner stages 14-20), increasing through intermediate (stages 26-43) and transformation phases (stages 44-45). These results indicated that fr47 potentially has a role to play in development and metamorphosis, in addition to freeze, anoxia, and dehydration tolerance. De novo analysis of FR47 protein structure revealed a likelihood of membrane associated function and possible GRB2 association. It is hypothesized that this interaction may influence inositol 1,4,5-trisphosphate production, known to increase during wood frog freezing.
Collapse
|
17
|
Biggar KK, Biggar Y, Storey KB. Identification of a novel dehydration responsive gene, drp10, from the African clawed frog, Xenopus laevis. ACTA ACUST UNITED AC 2015; 323:375-81. [PMID: 25866033 DOI: 10.1002/jez.1930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022]
Abstract
During periods of environmental stress a number of different anuran species employ adaptive strategies to promote survival. Our study found that in response to dehydration (i.e., loss of total body water content), the African clawed frog (Xenopus laevis) increased the expression of a novel gene (drp10) that encodes a structural homolog of the freeze-responsive FR10 protein found in wood frogs. Similar to FR10, the DRP10 protein was found to also contain a highly conserved N-terminal cleavable signal peptide. Furthermore, DRP10 was found to have high structural homology to the available crystal structures of type A and E apolipoproteins in Homo sapiens, and a type IV LS-12 anti-freeze protein in the longhorn sculpin, Myoxocephalus octodecemspinosis. In response to dehydration, the transcript expression of drp10 was found to increase 1.52 ± 0.16-fold and 1.97 ± 0.11-fold in response to medium (15%) and high (30%) dehydration stresses in the liver tissue of X. laevis, respectively, while drp10 expression increased 2.12 ± 0.12-fold and 1.46 ± 0.16-fold in kidney tissue. Although the molecular function of both dehydration-responsive DRP10 and the freeze-responsive FR10 have just begun to be elucidated, it is likely that both are frog-specific proteins that likely share a similar purpose during water-related stresses.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario
| | - Yulia Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario
| |
Collapse
|