1
|
Henze H, Hüttner SS, Koch P, Schüler SC, Groth M, von Eyss B, von Maltzahn J. Denervation alters the secretome of myofibers and thereby affects muscle stem cell lineage progression and functionality. NPJ Regen Med 2024; 9:10. [PMID: 38424446 PMCID: PMC10904387 DOI: 10.1038/s41536-024-00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation. This aberrant activation of MuSCs after loss of innervation is accompanied by profound alterations on the mRNA and protein level. Combination of muscle injury with loss of innervation results in impaired regeneration of skeletal muscle including shifts in myogenic populations concomitant with delayed maturation of regenerating myofibers. We further demonstrate that loss of innervation leads to alterations in myofibers and their secretome, which then affect MuSC behavior. In particular, we identify an increased secretion of Osteopontin and transforming growth factor beta 1 (Tgfb1) by myofibers isolated from mice which had undergone sciatic nerve transection. The altered secretome results in the upregulation of early activating transcription factors, such as Junb, and their target genes in MuSCs. However, the combination of different secreted factors from myofibers after loss of innervation is required to cause the alterations observed in MuSCs after loss of innervation. These data demonstrate that loss of innervation first affects myofibers causing alterations in their secretome which then affect MuSCs underscoring the importance of proper innervation for MuSC functionality and regeneration of skeletal muscle.
Collapse
Affiliation(s)
- Henriette Henze
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Sören S Hüttner
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Svenja C Schüler
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus - Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany.
| |
Collapse
|
2
|
Wolf CL, Pruett C, Lighter D, Jorcyk CL. The clinical relevance of OSM in inflammatory diseases: a comprehensive review. Front Immunol 2023; 14:1239732. [PMID: 37841259 PMCID: PMC10570509 DOI: 10.3389/fimmu.2023.1239732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine involved in a variety of inflammatory responses such as wound healing, liver regeneration, and bone remodeling. As a member of the interleukin-6 (IL-6) family of cytokines, OSM binds the shared receptor gp130, recruits either OSMRβ or LIFRβ, and activates a variety of signaling pathways including the JAK/STAT, MAPK, JNK, and PI3K/AKT pathways. Since its discovery in 1986, OSM has been identified as a significant contributor to a multitude of inflammatory diseases, including arthritis, inflammatory bowel disease, lung and skin disease, cardiovascular disease, and most recently, COVID-19. Additionally, OSM has also been extensively studied in the context of several cancer types including breast, cervical, ovarian, testicular, colon and gastrointestinal, brain,lung, skin, as well as other cancers. While OSM has been recognized as a significant contributor for each of these diseases, and studies have shown OSM inhibition is effective at treating or reducing symptoms, very few therapeutics have succeeded into clinical trials, and none have yet been approved by the FDA for treatment. In this review, we outline the role OSM plays in a variety of inflammatory diseases, including cancer, and outline the previous and current strategies for developing an inhibitor for OSM signaling.
Collapse
Affiliation(s)
- Cody L. Wolf
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
| | - Clyde Pruett
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Darren Lighter
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Cheryl L. Jorcyk
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| |
Collapse
|
3
|
Keenum MC, Chatterjee P, Atalis A, Pandey B, Jimenez A, Roy K. Single-cell epitope-transcriptomics reveal lung stromal and immune cell response kinetics to nanoparticle-delivered RIG-I and TLR4 agonists. Biomaterials 2023; 297:122097. [PMID: 37001347 PMCID: PMC10192313 DOI: 10.1016/j.biomaterials.2023.122097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Lung-resident and circulatory lymphoid, myeloid, and stromal cells, expressing various pattern recognition receptors (PRRs), detect pathogen- and danger-associated molecular patterns (PAMPs/DAMPs), and defend against respiratory pathogens and injuries. Here, we report the early responses of murine lungs to nanoparticle-delivered PAMPs, specifically the retinoic acid-inducible gene I (RIG-I) agonist poly-U/UC (PUUC), with or without the TLR4 agonist monophosphoryl lipid A (MPLA). Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we characterized the responses at 4 and 24 h after intranasal administration. Within 4 h, ribosome-associated transcripts decreased in both stromal and immune cells, followed by widespread interferon-stimulated gene (ISG) expression. Using RNA velocity, we show that lung-neutrophils dynamically regulate the synthesis of cytokines like CXCL-10, IL-1α, and IL-1β. Co-delivery of MPLA and PUUC increased chemokine synthesis and upregulated antimicrobial binding proteins targeting iron, manganese, and zinc in many cell types, including fibroblasts, endothelial cells, and epithelial cells. Overall, our results elucidate the early PAMP-induced cellular responses in the lung and demonstrate that stimulation of the RIG-I pathway, with or without TLR4 agonists, induces a ubiquitous microbial defense state in lung stromal and immune cells. Nanoparticle-delivered combination PAMPs may have applications in intranasal antiviral and antimicrobial therapies and prophylaxis.
Collapse
Affiliation(s)
- M Cole Keenum
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing Georgia Institute of Technology, Atlanta, GA, USA
| | - Alexandra Atalis
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Bhawana Pandey
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Angela Jimenez
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA; Marcus Center for Therapeutic Cell Characterization and Manufacturing Georgia Institute of Technology, Atlanta, GA, USA; The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Oncostatin M: A mysterious cytokine in cancers. Int Immunopharmacol 2020; 90:107158. [PMID: 33187910 DOI: 10.1016/j.intimp.2020.107158] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Oncostatin M (OSM), as a member of the Interleukin-6 family cytokines, plays a significant role in inflammation, autoimmunity, and cancers. It is mainly secreted by T lymphocytes, neutrophils, and macrophages and was initially introduced as anti-cancer agent. However, in some cases, it promotes cancer progression. Overexpression of OSM and OSM receptor has been detected in various cancers including colon cancer, breast cancer, pancreatic cancer, myeloma, brain tumors, chronic lymphocytic leukemia, and hepatoblastoma. STAT3 is the main downstream signaling molecule of OSM, which operates the leading role in modifications of cancer cells and enhancing cell growth, invasion, survival, and all other hallmarks of cancer cells. However, due to the presence of multiple signaling pathways, it can act contradictory in some cancers. In this review, we will discuss the emerging roles of OSM in cancer and elucidate its function in tumor control or progression and finally discuss therapeutic approaches designed to manipulate this cytokine in cancer.
Collapse
|
5
|
Johnston AD, Abdulrazak A, Sato H, Maqbool SB, Suzuki M, Greally JM, Simões-Pires CA. A Cellular Stress Response Induced by the CRISPR-dCas9 Activation System Is Not Heritable Through Cell Divisions. CRISPR J 2020; 3:188-197. [PMID: 33560917 DOI: 10.1089/crispr.2019.0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The CRISPR-Cas9 system can be modified to perform "epigenetic editing" by utilizing the catalytically inactive (dead) Cas9 (dCas9) to recruit regulatory proteins to specific genomic locations. In prior studies, epigenetic editing with multimers of the transactivator VP16 and guide RNAs (gRNAs) was found to cause adverse cellular responses. These side effects may confound studies inducing new cellular properties, especially if the cellular responses are maintained through cell divisions-an epigenetic regulatory property. Here, we show how distinct components of this CRISPR-dCas9 activation system, particularly dCas9 with untargeted gRNAs, upregulate genes associated with transcriptional stress, defense response, and regulation of cell death. Our results highlight a previously undetected acute stress response to CRISPR-dCas9 components in human cells, which is transient and not maintained through cell divisions.
Collapse
Affiliation(s)
- Andrew D Johnston
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alali Abdulrazak
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hanae Sato
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Shahina B Maqbool
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Masako Suzuki
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John M Greally
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Claudia A Simões-Pires
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Examination of methionine stimulation of gene expression in dairy cow mammary epithelial cells using RNA-sequencing. J DAIRY RES 2020; 87:226-231. [PMID: 32375921 DOI: 10.1017/s0022029920000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this research communication, a cell model with elevated β-CASEIN synthesis was established by stimulating bovine mammary epithelial cells with 0.6 mM methionine, and the genome-wide gene expression profiles of methionine-stimulated cells and untreated cells were investigated by RNA sequencing. A total of 458 differentially expressed genes (DEGs; 219 upregulated and 239 downregulated) were identified between the two groups. Gene Ontology (GO) analysis showed that the two highest-ranked GO terms in 'molecular function' category were 'binding' and 'catalytic activity', suggesting that milk protein synthesis in methionine-stimulated cells requires induction of gene expression to increase metabolic activity. Kyoto Encyclopedia of Genes and Genomes analysis revealed that within the 'environmental information processing' category, the subcategory that is most highly enriched for DEGs was 'signal transduction'. cGMP-PKG, Rap1, calcium, cAMP, PI3K-AKT, MAPK, and JAK-STAT are the pathways with the highest number of DEGs, suggesting that these signaling pathways have potential roles in mediating methionine-induced milk protein synthesis in bovine mammary epithelial cells. This study provides valuable insights into the physiological and metabolic adaptations in cells stimulated with methionine. Understanding the regulation of this transition is essential for effective intervention in the lactation process.
Collapse
|
7
|
Chastain-Potts SE, Tesic V, Tat QL, Cabrera OH, Quillinan N, Jevtovic-Todorovic V. Sevoflurane Exposure Results in Sex-Specific Transgenerational Upregulation of Target IEGs in the Subiculum. Mol Neurobiol 2020; 57:11-22. [PMID: 31512116 PMCID: PMC6980510 DOI: 10.1007/s12035-019-01752-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022]
Abstract
Large body of animal work and emerging clinical findings have suggested that early exposure to anesthetics may result in increased risk of learning disabilities and behavioral impairments. Recent studies have begun to investigate anesthesia-induced epigenetic modifications to elucidate their role in behavioral and neurodevelopmental abnormalities. Here we examine sevoflurane-induced transgenerational modifications of subicular neuronal DNA methylation and expression of immediate early genes (IEGs), arc and junB, crucial to synaptic plasticity and normal neuronal development. We show that 6 h sevoflurane exposure in postnatal day 7 rat pups resulted in decreased neuronal 5-methycytosine, indicating reduced DNA methylation. This effect is transgenerationally expressed in offspring born to exposed mothers which is of importance considering that decreased DNA methylation in the brain has been linked with functional decline in learning and memory. We further show that sevoflurane exposure induces upregulation of Arc and JunB mRNA expression, 42.7% and 35.2%, respectively. Transgenerational changes in Arc and JunB mRNA were sexually dimorphic only occurring in males born to exposed females, expressed as upregulation of Arc and JunB mRNA, 71.6% and 74.0%, respectively. We further investigated correlation between altered arc promoter methylation and observed upregulation of Arc mRNA and observed that sevoflurane reduced methylation in the 5-upstream promoter region of females exposed to sevoflurane. Transgenerational hypomethylation and modifications to IEGs crucial to synaptic plasticity, observed following neonatal sevoflurane exposure could contribute to morphological and cognitive deficits known to occur with neonatal sevoflurane exposure.
Collapse
Affiliation(s)
- Shelby E Chastain-Potts
- Department of Anesthesiology, University of Colorado School of Medicine, 13001 E. 17th Pl., Aurora, CO, 80045, USA
| | - Vesna Tesic
- Department of Anesthesiology, University of Colorado School of Medicine, 13001 E. 17th Pl., Aurora, CO, 80045, USA
| | - Quy L Tat
- Department of Anesthesiology, University of Colorado School of Medicine, 13001 E. 17th Pl., Aurora, CO, 80045, USA
| | - Omar H Cabrera
- Department of Anesthesiology, University of Colorado School of Medicine, 13001 E. 17th Pl., Aurora, CO, 80045, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado School of Medicine, 13001 E. 17th Pl., Aurora, CO, 80045, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado School of Medicine, 13001 E. 17th Pl., Aurora, CO, 80045, USA.
| |
Collapse
|