1
|
Chen Z, Shao W, Li Y, Zhang X, Geng Y, Ma X, Tao B, Ma Y, Yi C, Zhang B, Zhang R, Lin J, Chen J. Inhibition of PCSK9 prevents and alleviates cholesterol gallstones through PPARα-mediated CYP7A1 activation. Metabolism 2024; 152:155774. [PMID: 38191052 DOI: 10.1016/j.metabol.2023.155774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND & AIMS Dysregulated cholesterol metabolism is the major factor responsible for cholesterol gallstones (CGS). Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in cholesterol homeostasis and its inhibitors secure approval for treating various cholesterol metabolic disorders such as hypercholesterolemia and cardiovascular diseases, but its role in CGS remains unclear. Our study aims to clarify mechanisms by which PCSK9 promotes CGS formation and explore the application of the PCSK9 inhibitor, alirocumab, in preventing and treating CGS. APPROACH & RESULTS The expressions of PCSK9 were notably increased in CGS patients' serum, bile, and liver tissues compared to those without gallstones. Moreover, among CGS patients, hepatic PCSK9 was positively correlated with hepatic cholesterol and negatively correlated with hepatic bile acids (BAs), suggesting PCSK9 was involved in disrupted hepatic cholesterol metabolism related to CGS. Mechanistically, in vitro experiments demonstrated that inhibition of PCSK9 enhanced nuclear expression of PPARα by diminishing its lysosomal degradation and subsequently activated CYP7A1 transcription. Finally, inhibition of PCSK9 prevented CGS formation and dissolved the existing stones in CGS mice by elevating the conversion of cholesterol into BAs through PPARα-mediated CYP7A1 activation. Additionally, serum PCSK9 level may function as a prognostic signature to evaluate the therapeutic efficacy of PCSK9 inhibitors. CONCLUSIONS Inhibition of PCSK9 exerts preventive and therapeutic effects on CGS by activating PPARα-mediated CYP7A1 expression and facilitating the conversion of cholesterol into BAs, which highlights the potential of PCSK9 inhibition as a promising candidate for preventing and treating CGS in clinical applications. IMPACT AND IMPLICATIONS PCSK9 plays a pivotal role in cholesterol metabolism and its inhibitors are approved for clinical use in cardiovascular diseases. Our study observes inhibition of PCSK9 prevents and dissolves CGS by activating PPARα-mediated CYP7A1 expression and facilitating the conversion of cholesterol into BAs. Mechanistically, PCSK9 inhibition enhanced the nuclear expression of PPARα by diminishing its lysosomal degradation and subsequently activated CYP7A1 transcription. Our study sheds light on the new function and mechanism of PCSK9 in CGS, providing a novel preventive and therapeutic target with potential clinical applications.
Collapse
Affiliation(s)
- Zhenmei Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China; Shanghai Institute of Infectious Disease and Biosecurity, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Weiqing Shao
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Yitong Li
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Xiandi Zhang
- Department of Ultrasound, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Yan Geng
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Xiaochen Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Baorui Tao
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Yue Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Chenhe Yi
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Bo Zhang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Rui Zhang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Jing Lin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China.
| | - Jinhong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
2
|
Skeby CK, Hummelgaard S, Gustafsen C, Petrillo F, Frederiksen KP, Olsen D, Kristensen T, Ivarsen P, Madsen P, Christensen EI, Nielsen R, Birn H, Glerup S, Weyer K. Proprotein convertase subtilisin/kexin type 9 targets megalin in the kidney proximal tubule and aggravates proteinuria in nephrotic syndrome. Kidney Int 2023; 104:754-768. [PMID: 37406929 DOI: 10.1016/j.kint.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Proteinuria is a prominent feature of chronic kidney disease. Interventions that reduce proteinuria slow the progression of chronic kidney disease and the associated risk of cardiovascular disease. Here, we propose a mechanistic coupling between proteinuria and proprotein convertase subtilisin/kexin type 9 (PCSK9), a regulator of cholesterol and a therapeutic target in cardiovascular disease. PCSK9 undergoes glomerular filtration and is captured by megalin, the receptor responsible for driving protein reabsorption in the proximal tubule. Accordingly, megalin-deficient mice and patients carrying megalin pathogenic variants (Donnai Barrow syndrome) were characterized by elevated urinary PCSK9 excretion. Interestingly, PCSK9 knockout mice displayed increased kidney megalin while PCSK9 overexpression resulted in its reduction. Furthermore, PCSK9 promoted trafficking of megalin to lysosomes in cultured proximal tubule cells, suggesting that PCSK9 is a negative regulator of megalin. This effect can be accelerated under disease conditions since either genetic destruction of the glomerular filtration barrier in podocin knockout mice or minimal change disease (a common cause of nephrotic syndrome) in patients resulted in enhanced tubular PCSK9 uptake and urinary PCSK9 excretion. Pharmacological PCSK9 inhibition increased kidney megalin while reducing urinary albumin excretion in nephrotic mice. Thus, glomerular damage increases filtration of PCSK9 and concomitantly megalin degradation, resulting in escalated proteinuria.
Collapse
Affiliation(s)
- Cecilie K Skeby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Camilla Gustafsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | | | | | - Ditte Olsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | - Tilde Kristensen
- Department of Internal Medicine, Renal Unit, Regional Hospital Viborg, Viborg, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Ivarsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peder Madsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | | | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Byun JH, Lebeau PF, Platko K, Carlisle RE, Faiyaz M, Chen J, MacDonald ME, Makda Y, Yousof T, Lynn EG, Dickhout JG, Krepinsky JC, Weaver F, Igdoura SA, Seidah NG, Austin RC. Inhibitory Antibodies against PCSK9 Reduce Surface CD36 and Mitigate Diet-Induced Renal Lipotoxicity. KIDNEY360 2022; 3:1394-1410. [PMID: 36176646 PMCID: PMC9416829 DOI: 10.34067/kid.0007022021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/26/2022] [Indexed: 01/11/2023]
Abstract
Background PCSK9 modulates the uptake of circulating lipids through a range of receptors, including the low-density lipoprotein receptor (LDLR) and CD36. In the kidney, CD36 is known to contribute to renal injury through pro-inflammatory and -fibrotic pathways. In this study, we sought to investigate the role of PCSK9 in modulating renal lipid accumulation and injury through CD36 using a high fat diet (HFD)-induced murine model. Methods The effect of PCSK9 on the expression of CD36 and intracellular accumulation of lipid was examined in cultured renal cells and in the kidneys of male C57BL/6J mice. The effect of these findings was subsequently explored in a model of HFD-induced renal injury in Pcsk9 -/- and Pcsk9 +/+ littermate control mice on a C57BL/6J background. Results In the absence of PCSK9, we observed heightened CD36 expression levels, which increased free fatty acid (FFA) uptake in cultured renal tubular cells. As a result, PCSK9 deficiency was associated with an increase in long-chain saturated FFA-induced ER stress. Consistent with these observations, Pcsk9-/- mice fed a HFD displayed elevated ER stress, inflammation, fibrosis, and renal injury relative to HFD-fed control mice. In contrast to Pcsk9-/- mice, pretreatment of WT C57BL/6J mice with evolocumab, an anti-PCSK9 monoclonal antibody (mAb) that binds to and inhibits the function of circulating PCSK9, protected against HFD-induced renal injury in association with reducing cell surface CD36 expression on renal epithelia. Conclusions We report that circulating PCSK9 modulates renal lipid uptake in a manner dependent on renal CD36. In the context of increased dietary fat consumption, the absence of circulating PCSK9 may promote renal lipid accumulation and subsequent renal injury. However, although the administration of evolocumab blocks the interaction of PCSK9 with the LDLR, this evolocumab/PCSK9 complex can still bind CD36, thereby protecting against HFD-induced renal lipotoxicity.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Paul F. Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Rachel E. Carlisle
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Mahi Faiyaz
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Jack Chen
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Melissa E. MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Yumna Makda
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Tamana Yousof
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Edward G. Lynn
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Jeffrey G. Dickhout
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Joan C. Krepinsky
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Fiona Weaver
- Department of Biology and Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Suleiman A. Igdoura
- Department of Biology and Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Canada
| | - Richard C. Austin
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| |
Collapse
|
4
|
Zou W, Dong Y, Yang S, Gong L, Zhang Y, Shi B, La L, Tang L, Liu M. Imperatae rhizoma-Hedyotis diffusa Willd. herbal pair alleviates nephrotic syndrome by integrating anti-inflammatory and hypolipidaemic effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153644. [PMID: 34274601 DOI: 10.1016/j.phymed.2021.153644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nephrotic syndrome (NS) is a common nephropathy with a complex and diverse aetiology. Both Imperatae rhizoma and Hedyotis diffusa Willd. are herbs that are widely used as medicine and functional food. In traditional Chinese medicine theory, they are used as an herbal pair (HP) to treat inflammation-related diseases in the clinic, especially disorders of the kidney. PURPOSE This study aimed to investigate the anti-inflammatory and hypolipidaemic effects of HP in an NS rat model and provide scientific data for its clinical application. METHODS An NS model was established by two-dose injection of Sprague-Dawley rats with adriamycin. Seven groups, including the sham, model, HP treatment (0.25, 0.5 and 1.0 g/kg/d), prednisone (positive control, 5 mg/kg/d), and atorvastatin (positive control, 4 mg/kg/d) groups, were tested. The biochemical indexes of renal function and inflammatory cytokines were determined by ELISA kits and/or qPCR assays, and the crucial protein involved in the signalling pathway were subsequently tested by qPCR and/or Western blotting. Based on specific compounds identified by LC-Q-TOF-MS, network pharmacological study was carried out. RESULTS The levels of BUN, Scr, Upro, UA, Alb, TC, TG, and LDL-C were significantly elevated in model rats. HP treatment for four weeks improved the renal function and the dyslipidaemia by decreasing the levels of all parameters, except BUN and Scr. HP treatment (0.5 and 1.0 g/kg/d) upregulated the expression of PPARγ, CYP7b1, and LDLR in the liver, while it down-regulated PCSK9, showing a regulatory effect on lipid metabolism disorder. The levels of TNF-α and IL-1β in the plasma and the mRNA expression of TNF-α, IL-1β, MCP-1, and TGF-β1 in the kidney were decreased in HP groups, revealing its anti-inflammatory effect in NS rats. The HP exerted an alleviation effect on the inflammatory response through the NF-κB pathway by inhibiting the mRNA and protein expression of p50 and p65. There were 34 compounds identified or tentatively characterized in HP. In the network pharmacological study, PPARG(PPARγ), PCSK9, RELA(p65), and NF-κB1(p50) were the top 20 targets for HP, supporting the animal experimental results. CONCLUSION HP exhibited protective effects on NS rats. These effects might be closely related to the inhibition of NF-κB and PCSK9-LDLR and activation of the PPARγ-CYP7B1 signalling pathways.
Collapse
Affiliation(s)
- Wei Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China; Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC key laboratory of birth defects research, prevention and treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
| | - Yaqian Dong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shicong Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Linna Gong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Birui Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lei La
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Menghua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
5
|
Shrestha P, Adepu S, Vivès RR, Masri RE, Klooster A, Kaptein F, Dam W, Bakker SJL, van Goor H, van de Sluis B, van den Born J. Hypercholesterolemia in Progressive Renal Failure Is Associated with Changes in Hepatic Heparan Sulfate - PCSK9 Interaction. J Am Soc Nephrol 2021; 32:1371-1388. [PMID: 33758009 PMCID: PMC8259657 DOI: 10.1681/asn.2020091376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/04/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Dyslipidemia is an important risk factor in CKD. The liver clears triglyceride-rich lipoproteins (TRL) via LDL receptor (LDLR), LDLR-related protein-1 (LRP-1), and heparan sulfate proteoglycans (HSPGs), mostly syndecan-1. HSPGs also facilitate LDLR degradation by proprotein convertase subtilisin/kexin type 9 (PCSK9). Progressive renal failure affects the structure and activity of hepatic lipoprotein receptors, PCSK9, and plasma cholesterol. METHODS Uninephrectomy- and aging-induced CKD in normotensive Wistar rats and hypertensive Munich-Wistar-Frömter (MWF) rats. RESULTS Compared with 22-week-old sex- and strain-matched rats, 48-week-old uninephrectomized Wistar-CKD and MWF-CKD rats showed proteinuria, increased plasma creatinine, and hypercholesterolemia (all P<0.05), which were most apparent in hypertensive MWF-CKD rats. Hepatic PCSK9 expression increased in both CKD groups (P<0.05), with unusual sinusoidal localization, which was not seen in 22-week-old rats. Heparan sulfate (HS) disaccharide analysis, staining with anti-HS mAbs, and mRNA expression of HS polymerase exostosin-1 (Ext-1), revealed elongated HS chains in both CKD groups. Solid-phase competition assays showed that the PCSK9 interaction with heparin-albumin (HS-proteoglycan analogue) was critically dependent on polysaccharide chain length. VLDL binding to HS from CKD livers was reduced (P<0.05). Proteinuria and plasma creatinine strongly associated with plasma cholesterol, PCSK9, and HS changes. CONCLUSIONS Progressive CKD induces hepatic HS elongation, leading to increased interaction with PCSK9. This might reduce hepatic lipoprotein uptake and thereby induce dyslipidemia in CKD. Therefore, PCSK9/HS may be a novel target to control dyslipidemia.
Collapse
Affiliation(s)
- Pragyi Shrestha
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Saritha Adepu
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Romain R. Vivès
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Institute of Structural Biology, Grenoble, France
| | - Rana El Masri
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Institute of Structural Biology, Grenoble, France
| | - Astrid Klooster
- Department of Pathology, Pathology Friesland, Leeuwarden, The Netherlands
| | - Fleur Kaptein
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wendy Dam
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department Pediatrics, Section of Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Shrestha P, Yazdani S, Vivès RR, El Masri R, Dam W, van de Sluis B, van den Born J. Proteinuria converts hepatic heparan sulfate to an effective proprotein convertase subtilisin kexin type 9 enzyme binding partner. Kidney Int 2021; 99:1369-1381. [PMID: 33609572 DOI: 10.1016/j.kint.2021.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
Hepatic uptake of triglyceride-rich remnant lipoproteins is mediated by the low-density lipoprotein receptor, a low-density lipoprotein receptor related protein and the heparan sulfate proteoglycan, syndecan-1. Heparan sulfate proteoglycan also mediates low-density lipoprotein receptor degradation by a regulator of cholesterol homeostasis, proprotein convertase subtilisin kexin type 9 (PCSK9), thereby hampering triglyceride-rich remnant lipoproteins uptake. In this study, we investigated the effects of proteinuria on PCSK9, hepatic heparan sulfate proteoglycan and plasma triglyceride-rich remnant lipoproteins. Adriamycin-injected rats developed proteinuria, elevated triglycerides and total cholesterol (all significantly increased). Proteinuria associated with triglycerides and total cholesterol and serum PCSK9 (all significant associations) without loss of the low-density lipoprotein receptor as evidenced by immunofluorescence staining and western blotting. In proteinuric rats, PCSK9 accumulated in sinusoids, whereas in control rats PCSK9 was localized in the cytoplasm of hepatocytes. Molecular profiling revealed that the heparan sulfate side chains of heparan sulfate proteoglycan to be hypersulfated in proteinuric rats. Competition assays revealed sulfation to be a major determinant for PCSK9 binding. PCSK9 partly colocalized with hypersulfated heparan sulfate in proteinuric rats, but not in control rats. Hence, proteinuria induces hypersulfated hepatic heparan sulfate proteoglycans, increasing their affinity to PCSK9. This might impair hepatic triglyceride-rich remnant lipoproteins uptake, causing proteinuria-associated dyslipidemia. Thus, our study reveals PCSK9/heparan sulfate may be a novel target to control dyslipidemia.
Collapse
Affiliation(s)
- Pragyi Shrestha
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Leuven, Belgium; Vlaams Institute of Biotechnology Leuven Center for Microbiology, Leuven, Belgium
| | - Romain R Vivès
- University Grenoble Alpes, Institute of Structural Biology (IBS), Atomic Energy and Alternative Energies Commission (CEA), French National Centre for Scientific Research (CNRS), Grenoble, France
| | - Rana El Masri
- University Grenoble Alpes, Institute of Structural Biology (IBS), Atomic Energy and Alternative Energies Commission (CEA), French National Centre for Scientific Research (CNRS), Grenoble, France
| | - Wendy Dam
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jacob van den Born
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Schlüter KD, Wolf A, Schreckenberg R. Coming Back to Physiology: Extra Hepatic Functions of Proprotein Convertase Subtilisin/Kexin Type 9. Front Physiol 2020; 11:598649. [PMID: 33364976 PMCID: PMC7750466 DOI: 10.3389/fphys.2020.598649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Neuronal apoptosis regulated convertase-1 (NARC-1), now mostly known as proprotein convertase subtilisin/kexin type 9 (PCSK9), has received a lot of attention due to the fact that it is a key regulator of the low-density lipoprotein (LDL) receptor (LDL-R) and is therefore involved in hepatic LDL clearance. Within a few years, therapies targeting PCSK9 have reached clinical practice and they offer an additional tool to reduce blood cholesterol concentrations. However, PCSK9 is almost ubiquitously expressed in the body but has less well-understood functions and target proteins in extra hepatic tissues. As such, PCSK9 is involved in the regulation of neuronal survival and protein degradation, it affects the expression of the epithelial sodium channel (ENaC) in the kidney, it interacts with white blood cells and with cells of the vascular wall, and it modifies contractile activity of cardiomyocytes, and contributes to the regulation of cholesterol uptake in the intestine. Moreover, under stress conditions, signals from the kidney and heart can affect hepatic expression and thereby the plasma concentration of PCSK9 which then in turn can affect other target organs. Therefore, there is an intense relationship between the local (autocrine) and systemic (endocrine) effects of PCSK9. Although, PCSK9 has been recognized as a ubiquitously expressed modifier of cellular function and signaling molecules, its physiological role in different organs is not well-understood. The current review summarizes these findings.
Collapse
Affiliation(s)
| | - Annemarie Wolf
- Institute of Physiology, Justus-Liebig-University, Gießen, Germany
| | | |
Collapse
|
8
|
Didas N, Thitisopee W, Porntadavity S, Jeenduang N. Arylesterase activity but not PCSK9 levels is associated with chronic kidney disease in type 2 diabetes. Int Urol Nephrol 2020; 52:1725-1732. [PMID: 32661629 DOI: 10.1007/s11255-020-02547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Oxidative stress and dyslipidemia have been found to be associated with the progression of chronic kidney disease (CKD) in type 2 diabetes mellitus (T2DM) patients. Paraoxonase 1 (PON-1) activity, and proprotein convertase subtilisin kexin type 9 (PCSK9) levels play an important role regarding anti-oxidants, and lipid metabolism, respectively. The aim of this study was to investigate the association of PON-1 activity, and PCSK9 levels with CKD in T2DM. METHODS A total of 180 T2DM (87 CKD, and 93 non-CKD) with age-, and gender-matched subjects were recruited in this study. PON-1 activity was measured with two kinds of substrate: paraoxon for paraoxonase (PONase) activity and phenylacetate for arylesterase (AREase) activity. PCSK9 levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS AREase activity was significantly lower in CKD compared with non-CKD (225.53 ± 108.73 vs. 257.45 ± 106.12 kU/L, p = 0.044) in T2DM, whereas there was no significant difference in PONase activity and PCSK9 levels between CKD and non-CKD groups. In addition, multivariate logistic regression analysis showed that the lowest tertile of AREase increased the risk for CKD in T2DM (OR 3.251; 95% CI 1.333-7.926, p = 0.010), whereas PONase activity and PCSK9 levels were not associated with CKD in T2DM. CONCLUSION Reduced AREase activity can increase the risk for CKD in T2DM patients. AREase activity, but not PONase activity and PCSK9 levels, may be used as the biomarker for predicting the progression of CKD in T2DM.
Collapse
Affiliation(s)
- Nutsiwat Didas
- School of Allied Health Sciences, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, Thailand
| | | | - Sureerut Porntadavity
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Nutjaree Jeenduang
- School of Allied Health Sciences, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
9
|
Proprotein Convertase Subtilisin/Kexin Type 9, Angiopoietin-Like Protein 8, Sortilin, and Cholesteryl Ester Transfer Protein-Friends of Foes for Psoriatic Patients at the Risk of Developing Cardiometabolic Syndrome? Int J Mol Sci 2020; 21:ijms21103682. [PMID: 32456228 PMCID: PMC7279158 DOI: 10.3390/ijms21103682] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic, immune-metabolic disease with strong genetic predispositions and autoimmune pathogenic traits. During psoriasis progression, a wide spectrum of comorbidities comes into play with the leading role of the cardio-metabolic syndrome (CMS) that occurs with the frequency of 30–50% amongst the psoriatic patients. Both conditions—psoriasis and CMS—have numerous common pathways, mainly related to proinflammatory pathways and cytokine profiles. Surprisingly, despite the years of research, the exact pathways linking the occurrence of CMS in the psoriasis population are still not fully understood. Recently published papers, both clinical and based on the basic science, shed new light into this relationship providing an insight into novel key-players proteins with plausible effects on above-mentioned interplay. Taking into account recent advances in this important medical matter, this review aims to discuss comprehensively the role of four proteins: proprotein convertase subtilisin/kexin type-9 (PSCK9), angiopoietin-like protein 8 (ANGPLT8), sortilin (SORT1), and cholesteryl ester transfer proteins (CEPT) as plausible links between psoriasis and CMS.
Collapse
|
10
|
Wu D, Zhou Y, Pan Y, Li C, Wang Y, Chen F, Chen X, Yang S, Zhou Z, Liao Y, Qiu Z. Vaccine Against PCSK9 Improved Renal Fibrosis by Regulating Fatty Acid β-Oxidation. J Am Heart Assoc 2019; 9:e014358. [PMID: 31870234 PMCID: PMC6988173 DOI: 10.1161/jaha.119.014358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Defects in the renal fatty acid β‐oxidation pathway have been implicated in the development of renal fibrosis. Our group has developed a therapeutic vaccine targeting PCSK9 (proprotein convertase subtilisin/kexin type 9), named PCSK9Qβ‐003. In this study, we investigated the potential effectiveness of the PCSK9Qβ‐003 vaccine on hypercholesterolemia with renal fibrosis. Methods and Results The low‐density lipoprotein receptor+/− male mice fed with a high‐cholesterol (1%) Western diet were randomly assigned into 4 groups: the sham group (or the control group), the phosphate‐buffered saline group, the Qβ virus‐like particles group and the PCSK9Qβ‐003 vaccine group. Mice of the PCSK9Qβ‐003 group were injected with the PCSK9Qβ‐003 vaccine (100 μg/time) every 2 or 4 weeks. The mice were administered with either unilateral ureteral obstruction for 2 weeks or N‐nitro‐l‐arginine methyl ester (50 mg/kg per day) for 6 weeks to establish a renal fibrosis model. Compared with the other 3 groups, the PCSK9Qβ‐003 vaccine obviously decreased total cholesterol and low‐density lipoprotein cholesterol in low‐density lipoprotein receptor+/− mice with hypercholesterolemia. Compared with the phosphate‐buffered saline and Qβ virus‐like particles groups, the PCSK9Qβ‐003 vaccine improved hepatic steatosis and renal function. Histology analysis showed that the PCSK9Qβ‐003 vaccine significantly ameliorated renal lipid accumulation and renal fibrosis. Moreover, the PCSK9Qβ‐003 vaccine obviously upregulated the expression of low‐density lipoprotein receptor, very‐low‐density lipoprotein receptor, sterol‐regulatory element binding protein 2, and fatty acid β‐oxidation–related factors, and ameliorated renal fibrosis‐related molecules both in the unilateral ureteral obstruction and N‐nitro‐l‐arginine methyl ester models. Conclusions This study suggested that the PCSK9Qβ‐003 vaccine improved renal lipid accumulation and renal fibrosis by regulating fatty acid β‐oxidation, which may provide a promising method for treating hypercholesterolemia with renal fibrosis.
Collapse
Affiliation(s)
- Danyu Wu
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yanzhao Zhou
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yajie Pan
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Chang Li
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yingxuan Wang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Fen Chen
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiao Chen
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shijun Yang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zihua Zhou
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhihua Qiu
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
11
|
Lunasin Improves the LDL-C Lowering Efficacy of Simvastatin via Inhibiting PCSK9 Expression in Hepatocytes and ApoE -/- Mice. Molecules 2019; 24:molecules24224140. [PMID: 31731717 PMCID: PMC6891362 DOI: 10.3390/molecules24224140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Statins are the most popular therapeutic drugs to lower plasma low density lipoprotein cholesterol (LDL-C) synthesis by competitively inhibiting hydroxyl-3-methyl-glutaryl-CoA (HMG-CoA) reductase and up-regulating the hepatic low density lipoprotein receptor (LDLR). However, the concomitant up-regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) by statin attenuates its cholesterol lowering efficacy. Lunasin, a soybean derived 43-amino acid polypeptide, has been previously shown to functionally enhance LDL uptake via down-regulating PCSK9 and up-regulating LDLR in hepatocytes and mice. Herein, we investigated the LDL-C lowering efficacy of simvastatin combined with lunasin. In HepG2 cells, after co-treatment with 1 μM simvastatin and 5 μM lunasin for 24 h, the up-regulation of PCSK9 by simvastatin was effectively counteracted by lunasin via down-regulating hepatocyte nuclear factor 1α (HNF-1α), and the functional LDL uptake was additively enhanced. Additionally, after combined therapy with simvastatin and lunasin for four weeks, ApoE−/− mice had significantly lower PCSK9 and higher LDLR levels in hepatic tissues and remarkably reduced plasma concentrations of total cholesterol (TC) and LDL-C, as compared to each monotherapy. Conclusively, lunasin significantly improved the LDL-C lowering efficacy of simvastatin by counteracting simvastatin induced elevation of PCSK9 in hepatocytes and ApoE−/− mice. Simvastatin combined with lunasin could be a novel regimen for hypercholesterolemia treatment.
Collapse
|
12
|
Del Vecchio L, Baragetti I, Locatelli F. New agents to reduce cholesterol levels: implications for nephrologists. Nephrol Dial Transplant 2019; 35:213-218. [DOI: 10.1093/ndt/gfz013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, ASST-Lecco, Italy
| | - Ivano Baragetti
- Department of Nephrology and Dialysis, Ospedale Bassini, ASST Nord Milano—Cinisello Balsamo, Milan, Italy
| | - Francesco Locatelli
- Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, ASST-Lecco, Italy
| |
Collapse
|
13
|
Up-regulation of PCSK9 gene expression and diminished level of LDL-receptor in rat liver as a potential cause of post-lipectomy hypercholesterolemia. Mol Cell Biochem 2018; 455:207-217. [PMID: 30483910 PMCID: PMC6445806 DOI: 10.1007/s11010-018-3484-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022]
Abstract
Studies designed to examine effects of fat mass reduction (including lipodystrophy and lipectomy) on human serum total and LDL-cholesterol concentrations are inconsistent. The purpose of this study was to examine effect of partial lipectomy in rats (as an experimental model of fat mass reduction in humans) on (1) circulating total cholesterol, LDL-cholesterol + VLDL-cholesterol and HDL-cholesterol concentrations, and (2) factors which may affect serum cholesterol concentrations such as: (a) liver LDL-receptor level, (b) expression of liver PCSK9 and (c) circulating PCSK9 concentration. Reduction of rat adipose tissue mass resulted in an increase in circulating total and LDL + VLDL—cholesterol concentrations, which was associated with (a) decrease in liver LDL-R level, (b) increase in liver PCSK9 expression, and (c) increase in circulating PCSK9 concentration as compared with sham controls. These changes were accompanied by elevated liver HNF1α (and HNF4α) mRNA levels. Silencing HNF1α in HepG2 cells by siRNA led to decrease in PCSK9 mRNA levels. This suggests that overexpression of HNF1α gene in liver of lipectomized rats can lead to overproduction of PCSK9. In conclusion, up-regulation of PCSK9, due to overexpression of HNF1α gene in liver of lipectomized rats and subsequently increase in circulating PCSK9 concentration lead to decrease in liver LDL-R level. This may contribute, at least in part, to an increase in the concentration of circulating cholesterol in rats with reduced fat mass. These findings provide a possible explanation for the molecular mechanism of hypercholesterolemia observed sometimes after reduction of fat mass in human.
Collapse
|
14
|
Abstract
Ischemic heart disease is the main cause of death worldwide and it is accelerated by increased low-density lipoprotein (LDL) cholesterol (LDL-C) and/or lipoprotein (a) (Lp(a)) concentrations. Proprotein convertase subtilisin/kexin type 9 (PCSK9) alters both LDL-C and in part Lp(a) concentrations through its ability to induce degradation of the LDL receptor (LDLR). PCSK9, however, has additional targets which are potentially involved in lipid metabolism regulation such as the very low density lipoprotein receptor (VLDL), CD36 (cluster of differentiation 36) and the epithelial cholesterol transporter (NPC1L1) and it affects expression of apolipoprotein B48. The PCSK9 activity is tightly regulated at several levels by factors influencing its transcription, secretion, or by extracellular inactivation and clearance. Many comorbidities (kidney insufficiency, hypothyreoidism, hyperinsulinemia, inflammation) modify PCSK9 expression and release. Two humanized antibodies directed against extracellular PCSK9 received approval by the European and US authorities and additional PCSK9 directed therapeutics (such as silencing RNA) are already in clinical trials. Their results demonstrate a significant reduction in both LDL-C and Lp(a) concentrations – independent of the concomitant medication – and one of them reduced plaque size in high risk cardiovascular patients; results of two ongoing large clinical endpoints studies are awaited. In this review, we summarize and discuss the recent biological data on PCSK9, the regulation of PCSK9, and finally briefly summarize the data of recent clinical studies in the context of lipid metabolism.
Collapse
Affiliation(s)
- Rainer Schulz
- Department of Physiology, Justus-Liebig-Universität, Aulweg 129, 35392, Giessen, Germany.
| | - Klaus-Dieter Schlüter
- Department of Physiology, Justus-Liebig-Universität, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
15
|
Haas ME, Levenson AE, Sun X, Liao WH, Rutkowski JM, de Ferranti SD, Schumacher VA, Scherer PE, Salant DJ, Biddinger SB. The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia. Circulation 2016; 134:61-72. [PMID: 27358438 DOI: 10.1161/circulationaha.115.020912] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/28/2016] [Indexed: 01/27/2023]
Abstract
BACKGROUND In nephrotic syndrome, damage to the podocytes of the kidney produces severe hypercholesterolemia for which novel treatments are urgently needed. PCSK9 (proprotein convertase subtilisin/kexin type 9) has emerged as an important regulator of plasma cholesterol levels and therapeutic target. Here, we tested the role of PCSK9 in mediating the hypercholesterolemia of nephrotic syndrome. METHODS PCSK9 and plasma lipids were studied in nephrotic syndrome patients before and after remission of disease, mice with genetic ablation of the podocyte (Podocyte Apoptosis Through Targeted Activation of Caspase-8, Pod-ATTAC mice) and mice treated with nephrotoxic serum (NTS), which triggers immune-mediated podocyte damage. In addition, mice with hepatic deletion of Pcsk9 were treated with NTS to determine the contribution of PCSK9 to the dyslipidemia of nephrotic syndrome. RESULTS Patients with nephrotic syndrome showed a decrease in plasma cholesterol and plasma PCSK9 on remission of their disease (P<0.05, n=47-50). Conversely, Pod-ATTAC mice and NTS-treated mice showed hypercholesterolemia and a 7- to 24-fold induction in plasma PCSK9. The induction of plasma PCSK9 appeared to be attributable to increased secretion of PCSK9 from the hepatocyte coupled with decreased clearance. Interestingly, knockout of Pcsk9ameliorated the effects of NTS on plasma lipids. Thus, in the presence of NTS, mice lacking hepatic Pcsk9 showed a 40% to 50% decrease in plasma cholesterol and triglycerides. Moreover, the ability of NTS treatment to increase the percentage of low-density lipoprotein-associated cholesterol (from 9% in vehicle-treated Flox mice to 47% after NTS treatment), was lost in mice with hepatic deletion of Pcsk9 (5% in both the presence and absence of NTS). CONCLUSIONS Podocyte damage triggers marked inductions in plasma PCSK9, and knockout of Pcsk9 ameliorates dyslipidemia in a mouse model of nephrotic syndrome. These data suggest that PCSK9 inhibitors may be beneficial in patients with nephrotic syndrome-associated hypercholesterolemia.
Collapse
Affiliation(s)
- Mary E Haas
- From Division of Endocrinology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (M.E.H., A.E.L., X.S., W.-H.L., S.B.B.); Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (J.M.R., P.E.S.); Division of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (S.D.d.F.); Division of Nephrology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA (V.A.S.); and Department of Medicine, Section of Nephrology, Boston University Medical Center, MA (D.J.S.)
| | - Amy E Levenson
- From Division of Endocrinology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (M.E.H., A.E.L., X.S., W.-H.L., S.B.B.); Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (J.M.R., P.E.S.); Division of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (S.D.d.F.); Division of Nephrology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA (V.A.S.); and Department of Medicine, Section of Nephrology, Boston University Medical Center, MA (D.J.S.)
| | - Xiaowei Sun
- From Division of Endocrinology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (M.E.H., A.E.L., X.S., W.-H.L., S.B.B.); Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (J.M.R., P.E.S.); Division of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (S.D.d.F.); Division of Nephrology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA (V.A.S.); and Department of Medicine, Section of Nephrology, Boston University Medical Center, MA (D.J.S.)
| | - Wan-Hui Liao
- From Division of Endocrinology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (M.E.H., A.E.L., X.S., W.-H.L., S.B.B.); Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (J.M.R., P.E.S.); Division of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (S.D.d.F.); Division of Nephrology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA (V.A.S.); and Department of Medicine, Section of Nephrology, Boston University Medical Center, MA (D.J.S.)
| | - Joseph M Rutkowski
- From Division of Endocrinology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (M.E.H., A.E.L., X.S., W.-H.L., S.B.B.); Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (J.M.R., P.E.S.); Division of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (S.D.d.F.); Division of Nephrology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA (V.A.S.); and Department of Medicine, Section of Nephrology, Boston University Medical Center, MA (D.J.S.)
| | - Sarah D de Ferranti
- From Division of Endocrinology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (M.E.H., A.E.L., X.S., W.-H.L., S.B.B.); Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (J.M.R., P.E.S.); Division of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (S.D.d.F.); Division of Nephrology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA (V.A.S.); and Department of Medicine, Section of Nephrology, Boston University Medical Center, MA (D.J.S.)
| | - Valerie A Schumacher
- From Division of Endocrinology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (M.E.H., A.E.L., X.S., W.-H.L., S.B.B.); Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (J.M.R., P.E.S.); Division of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (S.D.d.F.); Division of Nephrology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA (V.A.S.); and Department of Medicine, Section of Nephrology, Boston University Medical Center, MA (D.J.S.)
| | - Philipp E Scherer
- From Division of Endocrinology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (M.E.H., A.E.L., X.S., W.-H.L., S.B.B.); Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (J.M.R., P.E.S.); Division of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (S.D.d.F.); Division of Nephrology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA (V.A.S.); and Department of Medicine, Section of Nephrology, Boston University Medical Center, MA (D.J.S.)
| | - David J Salant
- From Division of Endocrinology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (M.E.H., A.E.L., X.S., W.-H.L., S.B.B.); Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (J.M.R., P.E.S.); Division of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (S.D.d.F.); Division of Nephrology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA (V.A.S.); and Department of Medicine, Section of Nephrology, Boston University Medical Center, MA (D.J.S.)
| | - Sudha B Biddinger
- From Division of Endocrinology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (M.E.H., A.E.L., X.S., W.-H.L., S.B.B.); Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas (J.M.R., P.E.S.); Division of Cardiology, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, MA (S.D.d.F.); Division of Nephrology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA (V.A.S.); and Department of Medicine, Section of Nephrology, Boston University Medical Center, MA (D.J.S.).
| |
Collapse
|
16
|
Plasma PCSK9 concentrations during the course of nondiabetic chronic kidney disease: Relationship with glomerular filtration rate and lipid metabolism. J Clin Lipidol 2016; 11:87-93. [PMID: 28391915 DOI: 10.1016/j.jacl.2016.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The association between proprotein convertase subtilisin/kexin type 9 (PCSK9), a critical regulator of low-density lipoprotein (LDL) metabolism, and kidney function is a matter of debate. OBJECTIVE We aimed to assess the association of circulating PCSK9 concentrations with both glomerular filtration rate (eGFR) and serum lipid parameters in nondiabetic patients with chronic kidney disease (CKD). METHODS Fasting plasma PCSK9 concentrations were measured by ELISA in 94 nondiabetic nondialysis CKD (ND-CKD) patients not receiving statins, at different stages of CKD. RESULTS Plasma PCSK9 levels were associated neither to eGFR (P = .770) nor to proteinuria (P = .888) at several stages of CKD. In addition, plasma PCSK9 levels did not vary significantly between the different CKD stages. Plasma PCSK9 concentrations were positively correlated with apolipoprotein B (r = 0.221; P = .03) and triglycerides (r = 0.211; P = .04) but not with total cholesterol, calculated LDL-cholesterol, HDL cholesterol, lipoprotein(a), or CRP. CONCLUSION In a homogeneous population of nondiabetic subjects without lipid-lowering therapy, plasma PCSK9 concentrations are not associated to eGFR at several stages of CKD. These data suggest that kidney function per se does not impact significantly PCSK9 metabolism.
Collapse
|
17
|
Norata GD, Tavori H, Pirillo A, Fazio S, Catapano AL. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res 2016; 112:429-42. [PMID: 27496869 DOI: 10.1093/cvr/cvw194] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/06/2016] [Indexed: 12/17/2022] Open
Abstract
Proprotein convertase subtilisin kexin 9 (PCSK9) is a key regulator of low-density lipoprotein receptor levels and LDL-cholesterol levels. Loss-of-function mutations in PCSK9 gene are associated with hypocholesterolaemia and protection against cardiovascular disease, identifying PCSK9 inhibition as a valid therapeutic approach to manage hypercholesterolaemia and related diseases. Although PCSK9 is expressed mainly in the liver, it is present also in other tissues and organs with specific functions, raising the question of whether a pharmacological inhibition of PCSK9 to treat hypercholesterolaemia and associated cardiovascular diseases might be helpful or deleterious in non-hepatic tissues. For example, PCSK9 is expressed in the vascular wall, in the kidneys, and in the brain, where it was proposed to play a role in development, neurocognitive process, and neuronal apoptosis. A link between PCSK9 and immunity was also proposed as both sepsis and viral infections are differentially affected in the presence or absence of PCSK9. Despite the increasing number of observations, the debate on the exact roles of PCSK9 in extrahepatic tissues is still ongoing, and as very effective drugs that inhibit PCSK9 have become available to the clinician, a better understanding of the biological roles of PCSK9 is warranted.
Collapse
Affiliation(s)
- Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Hagai Tavori
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy IRCCS Multimedica, Milan, Italy
| | - Sergio Fazio
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy IRCCS Multimedica, Milan, Italy
| |
Collapse
|
18
|
Sucajtys-Szulc E, Szolkiewicz M, Swierczynski J, Rutkowski B. Up-regulation of Hnf1α gene expression in the liver of rats with experimentally induced chronic renal failure – A possible link between circulating PCSK9 and triacylglycerol concentrations. Atherosclerosis 2016; 248:17-26. [DOI: 10.1016/j.atherosclerosis.2016.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/04/2016] [Accepted: 02/23/2016] [Indexed: 12/12/2022]
|