1
|
Shi H, Chen S, Meng FW, Ossip DJ, Yan C, Li D. Epigenome-wide DNA methylation profiling in comparison between pathological and physiological hypertrophy of human cardiomyocytes. Front Genet 2023; 14:1264382. [PMID: 37829282 PMCID: PMC10565041 DOI: 10.3389/fgene.2023.1264382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Background: Physiological and pathological stimuli result in distinct forms of cardiac hypertrophy, but the molecular regulation comparing the two, especially at the DNA methylation level, is not well understood. Methods: We conducted an in vitro study using human cardiomyocytes exposed to angiotensin II (AngII) and insulin-like growth factor 1 (IGF-1) to mimic pathologically and physiologically hypertrophic heart models, respectively. Whole genome DNA methylation patterns were profiled by the Infinium human MethylationEPIC platform with >850 K DNA methylation loci. Two external datasets were used for comparisons and qRT-PCR was performed for examining expression of associated genes of those identified DNA methylation loci. Results: We detected 194 loci that are significantly differentially methylated after AngII treatment, and 206 significant loci after IGF-1 treatment. Mapping the significant loci to genes, we identified 158 genes corresponding to AngII treatment and 175 genes to IGF-1 treatment. Using the gene-set enrichment analysis, the PI3K-Akt signaling pathway was identified to be significantly enriched for both AngII and IGF-1 treatment. The Hippo signaling pathway was enriched after IGF-1 treatment, but not for AngII treatment. CDK6 and RPTOR are components of the PI3K-Akt pathway but have different DNA methylation patterns in response to AngII and IGF-1. qRT-PCR confirmed the different gene expressions of CDK6 and PRTOR. Conclusion: Our study is pioneering in profiling epigenome DNA methylation changes in adult human cardiomyocytes under distinct stress conditions: pathological (AngII) and physiological (IGF-1). The identified DNA methylation loci, genes, and pathways might have the potential to distinguish between pathological and physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Hangchuan Shi
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Si Chen
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, Rochester, NY, United States
| | - Fanju W. Meng
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah J. Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, Rochester, NY, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
2
|
Multiple Copies of microRNA Binding Sites in Long 3'UTR Variants Regulate Axonal Translation. Cells 2023; 12:cells12020233. [PMID: 36672174 PMCID: PMC9856650 DOI: 10.3390/cells12020233] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Rapid responses to changes within subcellular compartments of highly polarized cells, such as neuron axons, depend on local translation and post-transcriptional regulation. The mechanism by which microRNAs (miRNAs) regulate this process is not fully understood. Here, using live cell imaging and RNA sequencing analysis, we demonstrated how miRNAs can differentially control hundreds of transcripts at the subcellular level. We demonstrated that the seed match length of the miRNA target-sequence regulates both mRNA stability and protein translation rates. While longer seed matches have an increased inhibitory effect, transcriptome analysis did not reveal differences in seed match length between axonal and somata mRNAs of motor neurons. However, mRNA variants with longer 3'UTR are enriched in axons and contain multiple repeats of specific miRNA target sequences. Finally, we demonstrated that the long 3'UTR mRNA variant of the motor protein Kif5b is enriched explicitly in motor neuron axons and contains multiple sequence repeats for binding miR-129-5p. This subsequently results in the differential post-transcriptional regulation of kif5b and its synthesis in axons. Thus, we suggest that the number of miRNA binding sites at the 3'UTR of the mRNA, rather than the miRNA seed match length, regulates the axonal transcriptome.
Collapse
|
3
|
Sun J, Zhu YM, Liu Q, Hu YH, Li C, Jie HH, Xu GH, Xiao RJ, Xing XL, Yu SC, Liang YP. LncRNA ROR modulates myocardial ischemia-reperfusion injury mediated by the miR-185-5p/CDK6 axis. J Transl Med 2022; 102:505-514. [PMID: 35066566 DOI: 10.1038/s41374-021-00722-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
LncRNAs and miRNAs are correlated with the pathogenesis of myocardial ischemia-reperfusion injury (MIRI). Whether lncRNA ROR or miR-185-5p plays a crucial role in MIRI is still unclear. In in-vitro, human cardiac myocytes (HCMs) were treated with hypoxia/reoxygenation (H/R). Wistar rats were used to set up an in-vitro I/R model by means of recanalization after ligation. Evaluation of the myocardial injury marker lactate dehydrogenase (LDH) in HCMs cells was performed. The expression of miR-185-5p and ROR, IL-1β, and IL-18 were detected by qRT-PCR. ELISA was also performed to evaluate the secretion of IL-1β and IL-18. Western blotting was carried out to determine CDK6, NLRP3, GSDMD-N, ASC, and cleaved-caspase1 protein expression. The relationship between miR-185-5p and CDK6 or ROR was confirmed by a dual-luciferase reporter assay. Our findings revealed that H/R treated HCMs showed a significantly decreased miR-185-5p expression and increased expression of CDK6 and ROR. ROR knockdown reduced H/R induced pyroptosis and inflammation, while knockdown of miR-185-5p accelerated the effect. Furthermore, miR-185-5p was negatively regulated and absorbed by ROR in HCMs. Overexpression of miR-185-5p reversed the H/R-induced cell pyroptosis and upregulation of LDH, IL-1β, and IL-18. In HCMs, miR-185-5p was also negatively regulated and related to CDK6 expression. Moreover, overexpression of CDK6 significantly inhibited the effects of miR-185-5p mimics on the inflammatory response and pyroptosis of HCMs. Knockdown of ROR alleviated H/R-induced myocardial injury by elevating miR-185-5p and inhibiting CDK6 expression. Taken together, our results show that the ROR/miR-185-5p/CDK6 axis modulates cell pyroptosis induced by H/R and the inflammatory response of HCMs.
Collapse
Affiliation(s)
- Jing Sun
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Yan-Meng Zhu
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Qin Liu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Yan-Hui Hu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Chang Li
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Huan-Huan Jie
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Guo-Hai Xu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Ren-Jie Xiao
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Xian-Liang Xing
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Shu-Chun Yu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China
| | - Ying-Ping Liang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P.R. China.
| |
Collapse
|
4
|
Guo J, Chen LW, Huang ZQ, Guo JS, Li H, Shan Y, Chen ZR, Yan YM, Zhu JN, Guo HM, Fang XH, Shan ZX. Suppression of the Inhibitory Effect of circ_0036176-Translated Myo9a-208 on Cardiac Fibroblast Proliferation by miR-218-5p. J Cardiovasc Transl Res 2022; 15:548-559. [PMID: 35288823 DOI: 10.1007/s12265-022-10228-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Increasing evidence has shown that circular RNAs (circRNAs) participate in the process of cardiac remodeling. CircRNA circ_0036176 originating from the back-splicing of exon 2 to exon4 of myosin IXA (Myo9a) gene was shown to be increased in the myocardium of patients with heart failure (HF) and riched in exosomes from human AC16 cardiomyocytes with overexpression of circ_0036176. Proliferation activity was inhibited in mCFs subjected to exosomal circ_0036176 treatment and in mCFs with overexpression of circ_0036176. Interestingly, circ_0036176 contains an IRES element and an ORF of 627 nt encoding a 208-amino acid protein (termed as Myo9a-208). Myo9a-208 was shown to mediate the inhibitory effect of circ_0036176 on CFs proliferation, and miR-218-5p could inhibit Myo9a-208 expression by binding to circ_0036176, resulting in abolishing the effect of circ_0036176 on inactivating cyclin/Rb signal and suppressing CFs proliferation. Our findings suggest that circ_0036176 inhibits mCFs proliferation by translating Myo9a-208 protein to suppress cyclin/Rb pathway.
Collapse
Affiliation(s)
- Jing Guo
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.,School of Medicine, South China University of Technology, Guangzhou, 510632, China
| | - Li-Wen Chen
- Guangdong Cardiovascular Institute, Guangzhou, 510080, China
| | - Zhi-Qi Huang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510632, China
| | - Ji-Shen Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Hui Li
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yue Shan
- Guangzhou Foreign Language School, Guangzhou, 511455, China
| | - Ze-Run Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Yu-Min Yan
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jie-Ning Zhu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hui-Ming Guo
- Guangdong Cardiovascular Institute, Guangzhou, 510080, China
| | - Xian-Hong Fang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Zhi-Xin Shan
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China. .,Guangdong Cardiovascular Institute, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Zeng N, Huang YQ, Yan YM, Hu ZQ, Zhang Z, Feng JX, Guo JS, Zhu JN, Fu YH, Wang XP, Zhang MZ, Duan JZ, Zheng XL, Xu JD, Shan ZX. Diverging targets mediate the pathological roleof miR-199a-5p and miR-199a-3p by promoting cardiac hypertrophy and fibrosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1035-1050. [PMID: 34786209 PMCID: PMC8571541 DOI: 10.1016/j.omtn.2021.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 01/29/2023]
Abstract
MicroRNA-199a-5p (miR-199a-5p) and -3p are enriched in the myocardium, but it is unknown whether miR-199a-5p and -3p are co-expressed in cardiac remodeling and what roles they have in cardiac hypertrophy and fibrosis. We show that miR-199a-5p and -3p are co-upregulated in the mouse and human myocardium with cardiac remodeling and in Ang-II-treated neonatal mouse ventricular cardiomyocytes (NMVCs) and cardiac fibroblasts (CFs). miR-199a-5p and -3p could aggravate cardiac hypertrophy and fibrosis in vivo and in vitro. PPAR gamma coactivator 1 alpha (Ppargc1a) and sirtuin 1 (Sirt1) were identified as target genes to mediate miR-199a-5p in promoting both cardiac hypertrophy and fibrosis. However, miR-199a-3p aggravated cardiac hypertrophy and fibrosis through targeting RB transcriptional corepressor 1 (Rb1) and Smad1, respectively. Serum response factor and nuclear factor κB p65 participated in the upregulation of miR-199a-5p and -3p in Ang-II-treated NMVCs and mouse CFs, and could be conversely elevated by miR-199a-5p and -3p. Together, Ppargc1a and Sirt1, Rb1 and Smad1 mediated the pathological effect of miR-199a-5p and -3p by promoting cardiac hypertrophy and fibrosis, respectively. This study suggests a possible new strategy for cardiac remodeling therapy by inhibiting miR-199a-5p and -3p.
Collapse
Affiliation(s)
- Ni Zeng
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Yu-Qing Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510632, China
| | - Yu-Min Yan
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Qin Hu
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Zhuo Zhang
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Jia-Xin Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510632, China
| | - Ji-Shen Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Jie-Ning Zhu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Yong-Heng Fu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Xi-Pei Wang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Meng-Zhen Zhang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Jin-Zhu Duan
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jin-Dong Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhi-Xin Shan
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| |
Collapse
|
6
|
Sayed-Pathan NI, Kumar P, Paknikar KM, Gajbhiye V. MicroRNAs: A Neoteric Approach to Understand Pathogenesis, Diagnose, and Treat Myocardial Infarction. J Cardiovasc Pharmacol 2021; 78:773-781. [PMID: 34882110 DOI: 10.1097/fjc.0000000000001141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Myocardial infarction is a substantial contributor to ischemic heart diseases, affecting a large number of people leading to fatal conditions worldwide. MicroRNAs (miRNAs) are explicitly emerging as excellent modulators of pathways involved in maintaining cardiomyocyte survival, repair, and regeneration. Altered expression of genes in cardiomyocytes postinfarction can lead to the disordered state of the myocardium, such as cardiac hypertrophy, ischemia-reperfusion injury, left ventricular remodeling, and cardiac fibrosis. Therapeutic targeting of miRNAs in cardiomyocytes can potentially reverse the adverse effects in the heart postinfarction. This review aims to understand the role of several miRNAs involved in the regeneration and repair of cardiomyocytes postmyocardial infarction and presents comprehensive information on the subject.
Collapse
Affiliation(s)
- Nida Irfan Sayed-Pathan
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Pramod Kumar
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| |
Collapse
|
7
|
Zhang C, Niu K, Lian P, Hu Y, Shuai Z, Gao S, Ge S, Xu T, Xiao Q, Chen Z. Pathological Bases and Clinical Application of Long Noncoding RNAs in Cardiovascular Diseases. Hypertension 2021; 78:16-29. [PMID: 34058852 DOI: 10.1161/hypertensionaha.120.16752] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence has suggested that noncoding RNAs (ncRNAs) have vital roles in cardiovascular tissue homeostasis and diseases. As a main subgroup of ncRNAs, long ncRNAs (lncRNAs) have been reported to play important roles in lipid metabolism, inflammation, vascular injury, and angiogenesis. They have also been implicated in many human diseases including atherosclerosis, arterial remodeling, hypertension, myocardial injury, cardiac remodeling, and heart failure. Importantly, it was reported that lncRNAs were dysregulated in the development and progression of cardiovascular diseases (CVDs). A variety of studies have demonstrated that lncRNAs could influence gene expression at transcription, post-transcription, translation, and post-translation level. Particularly, emerging evidence has confirmed that the crosstalk among lncRNAs, mRNA, and miRNAs is an important underlying regulatory mechanism of lncRNAs. Nevertheless, the biological functions and molecular mechanisms of lncRNAs in CVDs have not been fully explored yet. In this review, we will comprehensively summarize the main findings about lncRNAs and CVDs, highlighting the most recent discoveries in the field of lncRNAs and their pathophysiological functions in CVDs, with the aim of dissecting the intrinsic association between lncRNAs and common risk factors of CVDs including hypertension, high glucose, and high fat. Finally, the potential of lncRNAs functioning as the biomarkers, therapeutic targets, as well as specific diagnostic and prognostic indicators of CVDs will be discussed in this review.
Collapse
Affiliation(s)
- Chengxin Zhang
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
| | - Kaiyuan Niu
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (K.N., Q.X.)
- Department of Otolaryngology, the third affiliated hospital of Anhui Medical University, China (K.N.)
| | - Panpan Lian
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, P.R. China (P.L.)
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, P.R. China (Y.H., T.X.)
| | - Ziqiang Shuai
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, P.R. China (S. Gao, Q.X.)
| | - Shenglin Ge
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, P.R. China (Y.H., T.X.)
| | - Qingzhong Xiao
- From the Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, P.R. China (C.Z., Z.S., S. Ge, Q.X.)
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (K.N., Q.X.)
- Department of Pharmacology, Basic Medical College, Anhui Medical University, P.R. China (S. Gao, Q.X.)
| | - Zhaolin Chen
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Hospital, P.R. China (Z.C.)
| |
Collapse
|
8
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
9
|
Zeng N, Wen YH, Pan R, Yang J, Yan YM, Zhao AZ, Zhu JN, Fang XH, Shan ZX. Dickkopf 3: a Novel Target Gene of miR-25-3p in Promoting Fibrosis-Related Gene Expression in Myocardial Fibrosis. J Cardiovasc Transl Res 2021; 14:1051-1062. [PMID: 33723747 DOI: 10.1007/s12265-021-10116-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Increasing evidence has shown that microRNAs (miRNAs) participate in cardiac fibrosis. We aimed to elucidate the effect of miRNA miR-25-3p on cardiac fibrosis. MiRNA microarray was used to profile miRNAs in the myocardium of angiotensin-II (Ang-II)-infused mice. Effect of miR-25-3p on expression of fibrosis-related genes, including Col1a1, Col3a1, and Acta2, was investigated both in vitro and in vivo. MiR-25-3p was shown increased in the myocardium of Ang-II-infused mice and patients with heart failure. MiR-25-3p enhanced fibrosis-related gene expression in mouse cardiac fibroblasts (mCFs) and in the myocardium of Ang-II-infused mice. Dickkopf 3 (Dkk3) was identified as a target gene of miR-25-3p, and Dkk3 could ameliorate Smad3 activation and fibrosis-related gene expression via enhancing Smad7 expression in mCFs. Additionally, NF-κB signal was proven to mediate upregulation of miR-25-3p in cardiac fibrosis. Our findings suggest that miR-25-3p enhances cardiac fibrosis by suppressing Dkk3 to activate Smad3 and fibrosis-related gene expression.
Collapse
Affiliation(s)
- Ni Zeng
- School of Medicine, South China University of Technology, Guangzhou, 510632, China
| | - Yi-Hong Wen
- School of Medicine, South China University of Technology, Guangzhou, 510632, China
| | - Rong Pan
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510632, China
| | - Jing Yang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu-Min Yan
- School of Pharmacy, Southern Medical University, Guangzhou, 510515, China
| | - An-Zhi Zhao
- School of Pharmacy, Southern Medical University, Guangzhou, 510515, China
| | - Jie-Ning Zhu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou, 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xian-Hong Fang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou, 510080, China.
| | - Zhi-Xin Shan
- School of Medicine, South China University of Technology, Guangzhou, 510632, China. .,School of Pharmacy, Southern Medical University, Guangzhou, 510515, China. .,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Wang W, Zheng H. Myocardial Infarction: The Protective Role of MiRNAs in Myocardium Pathology. Front Cardiovasc Med 2021; 8:631817. [PMID: 33748196 PMCID: PMC7973051 DOI: 10.3389/fcvm.2021.631817] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases have been regarded as the leading cause of death around the world, with myocardial infarction (MI) being the most severe form. MI leads to myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, ultimately leading to heart failure, and death. Micro RNAs (miRNAs) participate in the genesis and progression of myocardial pathology after MI by playing an important regulatory role. This review aims to summarize all available knowledge on the role of miRNAs in the myocardial pathological process after MI to uncover potential major target pathways. In addition, the main therapeutic methods and their latest progress are also reviewed. miRNAs can regulate the main signaling pathways as well as pathological processes. Thus, they have the potential to induce therapeutic effects. Hence, the combination of miRNAs with recently developed exosome nanocomplexes may represent the future direction of therapeutics.
Collapse
Affiliation(s)
- Wei Wang
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Hao Zheng
- Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
11
|
Li H, Xu JD, Fang XH, Zhu JN, Yang J, Pan R, Yuan SJ, Zeng N, Yang ZZ, Yang H, Wang XP, Duan JZ, Wang S, Luo JF, Wu SL, Shan ZX. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res 2021; 116:1323-1334. [PMID: 31397837 PMCID: PMC7243276 DOI: 10.1093/cvr/cvz215] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/01/2019] [Accepted: 08/08/2019] [Indexed: 01/05/2023] Open
Abstract
Aims Circular RNAs (circRNAs) are involved in gene regulation in a variety of physiological and pathological processes. The present study aimed to investigate the effect of circRNA_000203 on cardiac hypertrophy and the potential mechanisms involved. Methods and results CircRNA_000203 was found to be up-regulated in the myocardium of Ang-II-infused mice and in the cytoplasma of Ang-II-treated neonatal mouse ventricular cardiomyocytes (NMVCs). Enforced expression of circRNA_000203 enhances cell size and expression of atrial natriuretic peptide and β-myosin heavy chain in NMVCs. In vivo, heart function was impaired and cardiac hypertrophy was aggravated in Ang-II-infused myocardium-specific circRNA_000203 transgenic mice (Tg-circ203). Mechanistically, we found that circRNA_000203 could specifically sponge miR-26b-5p, -140-3p in NMVCs. Further, dual-luciferase reporter assay showed that miR-26b-5p, -140-3p could interact with 3′-UTRs of Gata4 gene, and circRNA_000203 could block the above interactions. In addition, Gata4 expression is transcriptionally inhibited by miR-26b-5p, -140-3p mimic in NMVCs but enhanced by over-expression of circRNA_000203 in vitro and in vivo. Functionally, miR-26b-5p, -140-3p, and Gata4 siRNA, could reverse the hypertrophic growth in Ang-II-induced NMVCs, as well as eliminate the pro-hypertrophic effect of circRNA_000203 in NMVCs. Furthermore, we demonstrated that NF-κB signalling mediates the up-regulation of circRNA_000203 in NMVCs exposed to Ang-II treatment. Conclusions Our data demonstrated that circRNA_000203 exacerbates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p leading to enhanced Gata4 levels.
Collapse
Affiliation(s)
- Hui Li
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jin-Dong Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Xian-Hong Fang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jie-Ning Zhu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Jing Yang
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Rong Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510632, China
| | - Shu-Jing Yuan
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Ni Zeng
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Zhen-Zhen Yang
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xi-Pei Wang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jin-Zhu Duan
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Jian-Fang Luo
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Shu-Lin Wu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhi-Xin Shan
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
12
|
Safa A, Bahroudi Z, Shoorei H, Majidpoor J, Abak A, Taheri M, Ghafouri-Fard S. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother 2020; 132:110903. [PMID: 33096351 DOI: 10.1016/j.biopha.2020.110903] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-1 (miR-1) is a conserved miRNA with high expression in the muscle tissues. In humans, two discrete genes, MIRN1-1 and MIRN1-2 residing on a genomic region on 18q11.2 produce a single mature miRNA which has 21 nucleotides. miR-1 has a regulatory role on a number of genes including heat shock protein 60 (HSP60), Kruppel-like factor 4 (KLF4) and Heart And Neural Crest Derivatives Expressed 2 (HAND2). miR-1 has critical roles in the physiological processes in the smooth and skeletal muscles as well as other tissues, thus being involved in the pathogenesis of a wide range of disorders. Moreover, dysregulation of miR-1 has been noted in diverse types of cancers including gastric, colorectal, breast, prostate and lung cancer. In the current review, we provide the summary of the data regarding the role of this miRNA in the normal development and the pathogenic processes.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciecnes, Tehran, Iran.
| |
Collapse
|
13
|
Nie X, He M, Wang J, Chen P, Wang F, Lai J, Li C, Yu T, Zuo H, Cui G, Miao K, Jiang J, Wang DW, Chen C. Circulating miR-4763-3p Is a Novel Potential Biomarker Candidate for Human Adult Fulminant Myocarditis. Mol Ther Methods Clin Dev 2020; 17:1079-1087. [PMID: 32478123 PMCID: PMC7248292 DOI: 10.1016/j.omtm.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022]
Abstract
Circulating microRNAs (miRNAs) are potential biomarkers in various diseases. However, whether they could serve as biomarkers for human adult fulminant myocarditis (FM) is unknown. Circulating miRNA expression profiles were detected by microarray analysis and validated by quantitative real-time PCR arrays. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to determine the critical roles of these circulating miRNAs in FM. Moreover, correlation analysis was employed between miRNAs and the parameters of cardiac functions in FM. Finally, the sensitivity and specificity of circulating long non-coding RNA (lncRNA) expression in FM diagnosis were evaluated using receiver operating characteristic curve analysis. Both microarray and quantitative real-time PCR analysis showed that the expression of miR-4763-3p and miR-4281 were upregulated in the plasma of FM at the onset, and their levels were restored as the clinical symptom recovered. The predicted target genes of miR-4763-3p and miR-4281 are involved in several pathways, mainly inflammatory and cardiac injury response. Moreover, the miRNAs enrichment was negatively correlated with the severity of FM. In addition, the expression levels of circulating miR-4763-3p were unchanged in myocardial infarction (MI) patients but showed high sensitivity and specificity for FM diagnosis. This study provides a global profile of circulating miRNAs in patients with FM, among which miR-4763-3p could serve as a potential biomarker.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengying He
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Chen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinsheng Lai
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenze Li
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yu
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Houjuan Zuo
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guanglin Cui
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Miao
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiangang Jiang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
14
|
袁 淑, 梁 景, 张 铭, 朱 杰, 潘 蓉, 李 晖, 曾 妮, 温 艺, 易 芷, 单 志. [CircRNA_005647 inhibits expressions of fibrosis-related genes in mouse cardiac fibroblasts via sponging miR-27b-3p]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1312-1319. [PMID: 31852652 PMCID: PMC6926080 DOI: 10.12122/j.issn.1673-4254.2019.11.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effect of circRNA_005647 on fibrotic phenotype of mouse cardiac fibroblasts (CFs) and explore its mechanism. METHODS We used an angiotensin Ⅱ (Ang-Ⅱ) capsule pump (daily dose of 1.46 mg/kg for 2 weeks) to establish a mouse model of myocardial fibrosis in C57BL/6 mice. Masson staining was used to detect myocardial fibrosis in the myocardium. The expression of circRNA_005647 in the myocardium of Ang-Ⅱ-infused mice and in Ang-Ⅱ-treated CFs were detected with real-time PCR. Actinomycin D and RNase R exonuclease digestion were used to test the stability of circRNA_005647 in mouse CFs. Over- expression of circRNA_005647 was achieved in the CFs by infecting the cells with a recombinant circRNA_005647 adenovirus (rAd-circRNA_005647), and the expressions of Col1a1, Col3a1 and Acta2 were detected in the cells with real-time PCR and Western blotting. Dual luciferase reporter assay, RNA antisense purification and RNA Pull down assay were performed to identify the interaction between circRNA_005647 and miR-27b-3p. RESULTS CircRNA_005647 was up- regulated in the myocardium of Ang-Ⅱ- infused mice and in Ang-Ⅱ-treated mouse CFs (P < 0.01). CircRNA_005647 was more stable than its host gene Myosin IXA (Myo9a) in response to actinomycin D (P < 0.01) and RNase R exonuclease treatment. The expressions of fibrosis-associated genes was down-regulated in the CFs over-expressing circRNA_ 005647 (P < 0.05). Dual luciferase reporter assay, RNA antisense purification and RNA Pull down assay revealed the interaction between miR-27b-3p and circRNA_005647. MiR-27b-3p obviously enhanced the fibrotic phenotype but reversed the inhibitory effect of circRNA_005647 on the expression of fibrosis associated genes in the CFs (P < 0.05). CONCLUSIONS CircRNA_005647 is upregulated in cardiac fibrosis and inhibits the expression of fibrosis-related genes through sponging miR-27b-3p in mouse CFs.
Collapse
Affiliation(s)
- 淑菁 袁
- 华南理工大学医学院,广东 广州 510006School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - 景南 梁
- 江门市中心医院药学部,广东 江门 529030Department of Pharmacy, Jiangmen Central Hospital, Jiangmen 529030, China
| | - 铭 张
- 广东省心血管病研究 所//广东省人民医院(广东省医学科学院)医学研究中心,广东 广州 510080Guangdong Cardiovascular Institute//Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 杰宁 朱
- 广东省心血管病研究 所//广东省人民医院(广东省医学科学院)医学研究中心,广东 广州 510080Guangdong Cardiovascular Institute//Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 蓉 潘
- 华南理工大学生物科学与工程学 院,广东 广州 510006School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - 晖 李
- 广东省心血管病研究 所//广东省人民医院(广东省医学科学院)医学研究中心,广东 广州 510080Guangdong Cardiovascular Institute//Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 妮 曾
- 华南理工大学医学院,广东 广州 510006School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - 艺红 温
- 华南理工大学医学院,广东 广州 510006School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - 芷瑶 易
- 华南理工大学生物科学与工程学 院,广东 广州 510006School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - 志新 单
- 华南理工大学医学院,广东 广州 510006School of Medicine, South China University of Technology, Guangzhou 510006, China
- 广东省心血管病研究 所//广东省人民医院(广东省医学科学院)医学研究中心,广东 广州 510080Guangdong Cardiovascular Institute//Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
15
|
Qin W, Zhang L, Li Z, Xiao D, Zhang Y, Yang H, Zhang H, Xu C, Zhang Y. Metoprolol protects against myocardial infarction by inhibiting miR-1 expression in rats. J Pharm Pharmacol 2019; 72:76-83. [PMID: 31702064 DOI: 10.1111/jphp.13192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Metoprolol is regarded as a first-line medicine for the treatment of myocardial infarction (MI). However, the underlying mechanisms remain largely unknown. This study aimed to investigate the involvement of miR-1 in the pharmacological function of metoprolol. METHODS In vivo MI model was established by left anterior descending coronary artery (LAD) ligation. The effects of metoprolol on infarct size and cardiac dysfunction were determined by triphenyltetrazolium chloride staining and cardiac echocardiography, respectively. In vitro oxidative stress cardiomyocyte model was established by H2 O2 treatment. The effect of metoprolol on the expression of miR-1 and connexin43 (Cx43) was quantified by real-time PCR and western blot, respectively. The intercellular communication was evaluated by lucifer yellow dye diffusion. KEY FINDINGS Left anterior descending ligation-induced MI injury was markedly attenuated by metoprolol as shown by reduced infarct size and better cardiac function. Metoprolol reversed the up-regulation of miR-1 and down-regulation of Cx43 in MI heart. Moreover, in H2 O2 -stimulated cardiomyocytes, overexpression of miR-1 abolished the effects of metoprolol on Cx43 up-regulation and increased intercellular communication, indicating that miR-1 may be a necessary mediator for the cardiac protective function of metoprolol. CONCLUSIONS Metoprolol relieves MI injury via suppression miR-1, thus increasing its target protein Cx43 and improving intercellular communication.
Collapse
Affiliation(s)
- Wei Qin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.,School of Pharmacy, Jining Medical University, Rizhao, China
| | - Longyin Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Dan Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yue Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Huan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Haiying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Chaoqian Xu
- Mudanjiang Medical University, Mudanjiang, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.,Institute of Cardiovascular Research, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
MicroRNAs in Cardiac Hypertrophy. Int J Mol Sci 2019; 20:ijms20194714. [PMID: 31547607 PMCID: PMC6801828 DOI: 10.3390/ijms20194714] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Like other organs, the heart undergoes normal adaptive remodeling, such as cardiac hypertrophy, with age. This remodeling, however, is intensified under stress and pathological conditions. Cardiac remodeling could be beneficial for a short period of time, to maintain a normal cardiac output in times of need; however, chronic cardiac hypertrophy may lead to heart failure and death. MicroRNAs (miRNAs) are known to have a role in the regulation of cardiac hypertrophy. This paper reviews recent advances in the field of miRNAs and cardiac hypertrophy, highlighting the latest findings for targeted genes and involved signaling pathways. By targeting pro-hypertrophic genes and signaling pathways, some of these miRNAs alleviate cardiac hypertrophy, while others enhance it. Therefore, miRNAs represent very promising potential pharmacotherapeutic targets for the management and treatment of cardiac hypertrophy.
Collapse
|
17
|
Colpaert RMW, Calore M. MicroRNAs in Cardiac Diseases. Cells 2019; 8:E737. [PMID: 31323768 PMCID: PMC6678080 DOI: 10.3390/cells8070737] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Since their discovery 20 years ago, microRNAs have been related to posttranscriptional regulation of gene expression in major cardiac physiological and pathological processes. We know now that cardiac muscle phenotypes are tightly regulated by multiple noncoding RNA species to maintain cardiac homeostasis. Upon stress or various pathological conditions, this class of non-coding RNAs has been found to modulate different cardiac pathological conditions, such as contractility, arrhythmia, myocardial infarction, hypertrophy, and inherited cardiomyopathies. This review summarizes and updates microRNAs playing a role in the different processes underlying the pathogenic phenotypes of cardiac muscle and highlights their potential role as disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robin M W Colpaert
- IMAiA-Institute for Molecular Biology and RNA Technology, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Martina Calore
- IMAiA-Institute for Molecular Biology and RNA Technology, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
18
|
Li Y, Tan W, Ye F, Xue F, Gao S, Huang W, Wang Z. Identification of microRNAs and genes as biomarkers of atrial fibrillation using a bioinformatics approach. J Int Med Res 2019; 47:3580-3589. [PMID: 31218935 PMCID: PMC6726789 DOI: 10.1177/0300060519852235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective We aimed to explore potential microRNAs (miRNAs) and target genes related to atrial fibrillation (AF). Methods Data for microarrays GSE70887 and GSE68475, both of which include AF and control groups, were downloaded from the Gene Expression Omnibus database. Differentially expressed miRNAs between AF and control groups were identified within each microarray, and the intersection of these two sets was obtained. These miRNAs were mapped to target genes in the miRNet database. Functional annotation and enrichment analysis of these target genes was performed in the DAVID database. The protein-protein interaction (PPI) network from the STRING database and the miRNA-target-gene network were merged into a PPI-miRNA network using Cytoscape software. Modules of this network containing miRNAs were detected and further analyzed. Results Ten differentially expressed miRNAs and 1520 target genes were identified. Three PPI-miRNA modules were constructed, which contained miR-424, miR-15a, miR-542-3p, and miR-421 as well as their target genes, CDK1, CDK6, and CCND3. Conclusion The identified miRNAs and genes may be related to the pathogenesis of AF. Thus, they may be potential biomarkers for diagnosis and targets for treatment of AF.
Collapse
Affiliation(s)
- Yingyuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Wulin Tan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Faling Xue
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
19
|
The Smad3-miR-29b/miR-29c axis mediates the protective effect of macrophage migration inhibitory factor against cardiac fibrosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2441-2450. [PMID: 31175931 DOI: 10.1016/j.bbadis.2019.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Although macrophage migration inhibitory factor (MIF) is known to have antioxidant property, the role of MIF in cardiac fibrosis has not been well understood. We found that MIF was markedly increased in angiotension II (Ang-II)-infused mouse myocardium. Myocardial function was impaired and cardiac fibrosis was aggravated in Mif-knockout (Mif-KO) mice. Functionally, overexpression of MIF and MIF protein could inhibit the expression of fibrosis-associated collagen (Col) 1a1, COL3A1 and α-SMA, and Smad3 activation in mouse cardiac fibroblasts (CFs). Consistently, MIF deficiency could exacerbate the expression of COL1A1, COL3A1 and α-SMA, and Smad3 activation in Ang-II-treated CFs. Interestingly, microRNA-29b-3p (miR-29b-3p) and microRNA-29c-3p (miR-29c-3p) were down-regulated in the myocardium of Ang-II-infused Mif-KO mice but upregulated in CFs with MIF overexpression or by treatment with MIF protein. MiR-29b-3p and miR-29c-3p could suppress the expression of COL1A1, COL3A1 and α-SMA in CFs through targeting the pro-fibrosis genes of transforming growth factor beta-2 (Tgfb2) and matrix metallopeptidase 2 (Mmp2). We further demonstrated that Mif inhibited reactive oxygen species (ROS) generation and Smad3 activation, and rescued the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Smad3 inhibitors, SIS3 and Naringenin, and Smad3 siRNA could reverse the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Taken together, our data demonstrated that the Smad3-miR-29b/miR-29c axis mediates the inhibitory effect of macrophage migration inhibitory factor on cardiac fibrosis.
Collapse
|
20
|
Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming. Cell Syst 2019; 8:412-426.e7. [PMID: 31078528 DOI: 10.1016/j.cels.2019.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/25/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used to treat solid tumors but can be cardiotoxic. The molecular basis for this toxicity and its relationship to therapeutic mechanisms remain unclear; we therefore undertook a systems-level analysis of human cardiomyocytes (CMs) exposed to four TKIs. CMs differentiated from human induced pluripotent stem cells (hiPSCs) were exposed to sunitinib, sorafenib, lapatinib, or erlotinib, and responses were assessed by functional assays, microscopy, RNA sequencing, and mass spectrometry (GEO: GSE114686; PRIDE: PXD012043). TKIs have diverse effects on hiPSC-CMs distinct from inhibition of tyrosine-kinase-mediated signal transduction; cardiac metabolism is particularly sensitive. Following sorafenib treatment, oxidative phosphorylation is downregulated, resulting in a profound defect in mitochondrial energetics. Cells adapt by upregulating aerobic glycolysis. Adaptation makes cells less acutely sensitive to sorafenib but may have long-term negative consequences. Thus, CMs exhibit adaptive responses to anti-cancer drugs conceptually similar to those previously shown in tumors to mediate drug resistance.
Collapse
|
21
|
Samal E, Evangelista M, Galang G, Srivastava D, Zhao Y, Vedantham V. Premature MicroRNA-1 Expression Causes Hypoplasia of the Cardiac Ventricular Conduction System. Front Physiol 2019; 10:235. [PMID: 30936836 PMCID: PMC6431665 DOI: 10.3389/fphys.2019.00235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022] Open
Abstract
Mammalian cardiac Purkinje fibers (PFs) are specified from ventricular trabecular myocardium during mid-gestation and undergo limited proliferation before assuming their final form. MicroRNA-1 (miR-1), a negative regulator of proliferation, is normally expressed in the heart at low levels during the period of PF specification and outgrowth, but expression rises steeply after birth, when myocardial proliferation slows and postnatal cardiac maturation and growth commence. Here, we test whether premature up-regulation and overexpression of miR-1 during the period of PF morphogenesis influences PF development and function. Using a mouse model in which miR-1 is expressed under the control of the Myh6 promoter, we demonstrate that premature miR-1 expression leads to PF hypoplasia that persists into adulthood, and miR-1 TG mice exhibit delayed conduction through the ventricular myocardium beginning at neonatal stages. In addition, miR-1 transgenic embryos showed reduced proliferation within the trabecular myocardium and embryonic ventricular conduction system (VCS), a source of progenitor cells for the PF. This repression of proliferation may be mediated by direct translational inhibition by miR-1 of the cyclin dependent kinase Cdk6, a key regulator of embryonic myocardial proliferation. Our results suggest that altering the timing of miR-1 expression can regulate PF development, findings which have implications for our understanding of conduction system development and disease in humans.
Collapse
Affiliation(s)
- Eva Samal
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, United States
| | - Melissa Evangelista
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Giselle Galang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, United States.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States.,Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Yong Zhao
- Department of Genetics and Genomic Sciences, Mount Sinai Hospital, New York, NY, United States
| | - Vasanth Vedantham
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
22
|
Zhang Y, Liu X, Zhang L, Li X, Zhou Z, Jiao L, Shao Y, Li M, Leng B, Zhou Y, Liu T, Liu Q, Shan H, Du Z. Metformin Protects against H 2O 2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:189-197. [PMID: 30292140 PMCID: PMC6172474 DOI: 10.1016/j.omtn.2018.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 01/30/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a major side effect of the reperfusion treatment of the ischemic heart. Few therapies are available for the effective prevention of this injury caused by the oxidative stress-induced cardiomyocyte apoptosis. Metformin was shown to have a potential cardiac protective effect and ability to reduce cardiac events, but the exact mechanism remains unclear. Here, we aimed to confirm and investigate the mechanisms underlying potential metformin activity against I/R injury in response to oxidative stress. We determined that the expression of miR-1a-3p was significantly increased in neonatal rat ventricular cells (NRVCs), which were exposed to H2O2in vitro and in the hearts of mice that underwent the I/R injury. MiR-1a-3p was shown to target the 3′ UTR of GRP94, which results in the accumulation of un- or misfolded proteins, leading to the endoplasmic reticulum (ER) stress. The obtained results demonstrated that C/EBP β directly induces the upregulation of miR-1a-3p by binding to its promoter. Furthermore, as a direct allosteric AMPK activator, metformin was shown to activate AMPK and significantly reduce C/EBP β and miR-1a-3p levels compared with those in the control group. In conclusion, metformin protects cardiomyocytes against H2O2 damage through the AMPK/C/EBP β/miR-1a-3p/GRP94 pathway, which indicates that metformin may be applied for the treatment of I/R injury.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xue Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhongqiu Zhou
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lei Jiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yingchun Shao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Mengmeng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bing Leng
- Pharmacy Intravenous Admixture Service, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Tianyi Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China; Department of Pharmaceutics, Dalian Children's Hospital, Dalian, Liaoning 116001, P.R. China
| | - Qiushuang Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.
| | - Zhimin Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.
| |
Collapse
|
23
|
Li Y, Liang Y, Zhu Y, Zhang Y, Bei Y. Noncoding RNAs in Cardiac Hypertrophy. J Cardiovasc Transl Res 2018; 11:439-449. [PMID: 30171598 DOI: 10.1007/s12265-018-9797-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/19/2018] [Indexed: 01/07/2023]
Abstract
Cardiac hypertrophy is classified as pathological and physiological hypertrophy. Pathological hypertrophy typically precedes the onset of heart failure, one of the largest contributors to disease burden and deaths worldwide. In contrast, physiological hypertrophy is an adaptive response and protects against adverse cardiac remodeling. Noncoding RNAs (ncRNAs) have drawn significant attention over the last couple of decades, and their dysregulation is increasingly being linked to cardiac hypertrophy and cardiovascular diseases. In this review, we will summarize the profiling, function, and molecular mechanism of microRNAs, long noncoding RNAs, and circular RNAs in pathological cardiac hypertrophy. Additionally, we also review microRNAs responsible for physiological hypertrophy. With better understanding of ncRNAs in cardiac hypertrophy, manipulation of the important ncRNAs will offer exciting avenues for the prevention and therapy of heart failure.
Collapse
Affiliation(s)
- Yongqin Li
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Yajun Liang
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Bei Li Tu Road, Beijing, 100037, China.
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
24
|
Zhu WS, Tang CM, Xiao Z, Zhu JN, Lin QX, Fu YH, Hu ZQ, Zhang Z, Yang M, Zheng XL, Wu SL, Shan ZX. Targeting EZH1 and EZH2 contributes to the suppression of fibrosis-associated genes by miR-214-3p in cardiac myofibroblasts. Oncotarget 2018; 7:78331-78342. [PMID: 27823969 PMCID: PMC5346642 DOI: 10.18632/oncotarget.13048] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
The role of microRNA-214-3p (miR-214-3p) in cardiac fibrosis was not well illustrated. The present study aimed to investigate the expression and potential target of miR-214-3p in angiotensin II (Ang-II)-induced cardiac fibrosis. MiR-214-3p was markedly decreased in the fibrotic myocardium of a mouse Ang-II infusion model, but was upregulated in Ang-II-treated mouse myofibroblasts. Cardiac fibrosis was shown attenuated in Ang-II-infused mice received tail vein injection of miR-214-3p agomir. Consistently, miR-214-3p inhibited the expression of Col1a1 and Col3a1 in mouse myofibroblasts in vitro. MiR-214-3p could bind the 3'-UTRs of enhancer of zeste homolog 1 (EZH1) and -2, and suppressed EZH1 and -2 expressions at the transcriptional level. Functionally, miR-214-3p mimic, in parallel to EZH1 siRNA and EZH2 siRNA, could enhance peroxisome proliferator-activated receptor-γ (PPAR-γ) expression and inhibited the expression of Col1a1 and Col3a1 in myofibroblasts. In addition, enforced expression of EZH1 and -2, and knockdown of PPAR-γ resulted in the increase of Col1a1 and Col3a1 in myofibroblasts. Moreover, the NF-κB signal pathway was verified to mediate Ang-II-induced miR-214-3p expression in myofibroblasts. Taken together, our results revealed that EZH1 and -2 were novel targets of miR-214-3p, and miR-214-3p might be one potential miRNA for the prevention of cardiac fibrosis.
Collapse
Affiliation(s)
- Wen-Si Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Mei Tang
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Southern Medical University, Guangzhou, China
| | - Zhen Xiao
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Ning Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiu-Xiong Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong-Heng Fu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Qin Hu
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Southern Medical University, Guangzhou, China
| | - Zhuo Zhang
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Min Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xi-Long Zheng
- The Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, The University of Calgary, Calgary, Canada
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Xin Shan
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
25
|
Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci Rep 2017; 7:11879. [PMID: 28928469 PMCID: PMC5605522 DOI: 10.1038/s41598-017-12192-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanisms underlying anthracyclines-induced cardiotoxicity have not been well elucidated. MiRNAs were revealed dysregulated in the myocardium and plasma of rats received Dox treatment. MicroRNA-34a-5p (miR-34a-5p) was verified increased in the myocardium and plasma of Dox-treated rats, but was reversed in rats received Dox plus DEX treatments. Human miR-34a-5p was also observed increased in the plasma of patients with diffuse large B-cell lymphoma after 9- and 16-week epirubicin therapy. Up-regulation of miR-34a-5p was observed in Dox-induced rat cardiomyocyte H9c2 cells. MiR-34a-5p could augment Bax expression, but inhibited Bcl-2 expression, along with the increases of the activated caspase-3 and mitochondrial potentials in H9C2 cells. MiR-34a-5p was verified to modulate Sirt1 expression post-transcriptionally. In parallel to Sirt1 siRNA, miR-34a-5p could enhance p66shc expression, accompanied by increases of Bax and the activated caspase-3 and a decrease of Bcl-2 in H9c2 cells. Moreover, enforced expression of Sirt1 alleviated Dox-induced apoptosis of H9c2 cells, with suppressing levels of p66shc, Bax, the activated caspase-3 and miR-34a-5p, and enhancing Bcl-2 expression. Therefore, miR-34a-5p enhances cardiomyocyte apoptosis by targeting Sirt1, activation of miR-34a-5p/Sirt1/p66shc pathway contributes to Dox-induced cardiotoxicity, and blockage of this pathway represents a potential cardioprotective effect against anthracyclines.
Collapse
|
26
|
Hu ZQ, Luo JF, Yu XJ, Zhu JN, Huang L, Yang J, Fu YH, Li T, Xue YM, Feng YQ, Shan ZX. Targeting myocyte-specific enhancer factor 2D contributes to the suppression of cardiac hypertrophic growth by miR-92b-3p in mice. Oncotarget 2017; 8:92079-92089. [PMID: 29190899 PMCID: PMC5696165 DOI: 10.18632/oncotarget.20759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/30/2017] [Indexed: 01/05/2023] Open
Abstract
The role of microRNA-92b-3p (miR-92b-3p) in cardiac hypertrophy was not well illustrated. The present study aimed to investigate the expression and potential target of miR-92b-3p in angiotensin II (Ang-II)-induced mouse cardiac hypertrophy. MiR-92b-3p was markedly decreased in the myocardium of Ang-II-infused mice and of patients with cardiac hypertrophy. However, miR-92b-3p expression was revealed increased in Ang-II-induced neonatal mouse cardiomyocytes. Cardiac hypertrophy was shown attenuated in Ang-II-infused mice received tail vein injection of miR-92b-3p mimic. Moreover, miR-92b-3p inhibited the expression of atrial natriuretic peptide (ANP), skeletal muscle α-actin (ACTA1) and β-myosin heavy chain (MHC) in Ang-II-induced mouse cardiomyocytes in vitro. Myocyte-specific enhancer factor 2D (MEF2D), which was increased in Ang-II-induced mouse hypertrophic myocardium and cardiomyocytes, was identified as a target gene of miR-92b-3p. Functionally, miR-92b-3p mimic, consistent with MEF2D siRNA, inhibited cell size increase and protein expression of ANP, ACTA1 and β-MHC in Ang-II-treated mouse cardiomyocytes. Taken together, we demonstrated that MEF2D is a novel target of miR-92b-3p, and attenuation of miR-92b-3p expression may contribute to the increase of MEF2D in cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhi-Qin Hu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Fang Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Ju Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Ning Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Huang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jing Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong-Heng Fu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tao Li
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying-Qing Feng
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Xin Shan
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
27
|
Huang J, Huang H, Pan W, Ou D, Dai W, Lin Y, Wu J, Xie W, Chen X. Renal denervation attenuates cardiac hypertrophy in spontaneously hypertensive rats via regulation of autophagy. Mol Med Rep 2017. [PMID: 28627693 PMCID: PMC5562017 DOI: 10.3892/mmr.2017.6790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been suggested that renal denervation (RD) may attenuate left ventricular (LV) hypertrophy. However, the role that autophagy serves in this process is currently unclear. In the present study, utilizing a model of hypertension-induced cardiac hypertrophy in spontaneous hypertensive rats, it was demonstrated that RD was significantly associated with a reduction in LV hypertrophy. Furthermore, a decrease in the myocardial mRNA of hypertrophy-associated genes was demonstrated in RD rats compared with sham controls. In addition, RD in hypertension-induced LV hypertrophy rats was associated with the attenuation of cellular autophagic response over activation at a physiological level. This was indicated by a reduction in the expression of Beclin-1, autophagy related 9A and microtubule-associated protein 1A/1B-light chain 3 II/I in RD rats to physiological levels that are observed in control rats. Furthermore, the number of autophagosomes was restored to physiological levels in the cardiomyocytes of RD rats. The results of the current study suggest that RD may attenuate LV hypertrophy via the regulation of autophagic responses.
Collapse
Affiliation(s)
- Jionghua Huang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - He Huang
- Department of Cardiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, P.R. China
| | - Wei Pan
- Department of Cardiology, Nanhai Hospital Affiliated to Southern Medical University, Foshan, Guangdong 528200, P.R. China
| | - Dejin Ou
- Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Wenjun Dai
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Yuhui Lin
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Jinlei Wu
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Wenjie Xie
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Ximing Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| |
Collapse
|
28
|
CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 2017; 7:40342. [PMID: 28079129 PMCID: PMC5228128 DOI: 10.1038/srep40342] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/05/2016] [Indexed: 01/11/2023] Open
Abstract
Circular RNAs (circRNAs) participate in regulating gene expression in diverse biological and pathological processes. The present study aimed to investigate the mechanism underlying the modulation of circRNA_000203 on expressions of fibrosis-associated genes in cardiac fibroblasts. CircRNA_000203 was shown upregulated in the diabetic mouse myocardium and in Ang-II-induced mouse cardiac fibroblasts. Enforced-expression of circRNA_000203 could increase expressions of Col1a2, Col3a1 and α-SMA in mouse cardiac fibroblasts. RNA pull-down and RT-qPCR assay indicated that circRNA_000203 could specifically sponge miR-26b-5p. Dual luciferase reporter assay revealed that miR-26b-5p interacted with 3′UTRs of Col1a2 and CTGF, and circ_000203 could block the interactions of miR-26b-5p and 3′UTRs of Col1a2 and CTGF. Transfection of miR-26b-5p could post-transcriptionaly inhibit expressions of Col1a2 and CTGF, accompanied with the suppressions of Col3a1 and α-SMA in cardiac fibroblasts. Additionally, over-expression of circRNA_000203 could eliminate the anti-fibrosis effect of miR-26b-5p in cardiac fibroblasts. Together, our results reveal that suppressing the function of miR-26b-5p contributes to the pro-fibrosis effect of circRNA_000203 in cardiac fibroblasts.
Collapse
|