1
|
Lujerdean C, Zăhan M, Dezmirean DS, Ștefan R, Simedru D, Damian G, Vedeanu NS. In Vitro Studies Demonstrate Antitumor Activity of Vanadium Ions from a CaO-P 2O 5-CaF 2:V 2O 5 Glass System in Human Cancer Cell Lines A375, A2780, and Caco-2. Int J Mol Sci 2023; 24:1149. [PMID: 36674660 PMCID: PMC9860932 DOI: 10.3390/ijms24021149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
In this research, we investigated the structural and biological properties of phosphate glasses (PGs) after the addition of V2O5. A xV2O5∙(100 − x)[CaF2∙3P2O5∙CaO] glass system with 0 ≤ x ≤ 16 mol% was synthesized via a conventional melt-quenching technique. Several analysis techniques (dissolution tests, pH, SEM-EDS, FT-IR, and EPR) were used to obtain new experimental data regarding the structural behavior of the system. In vitro tests were conducted to assess the antitumor character of V2O5-doped glass (x = 16 mol%) compared to the matrix (x = 0 mol%) and control (CTRL-) using several tumoral cell lines (A375, A2780, and Caco-2). The characterization of PGs showed an overall dissolution rate of over 90% for all vitreous samples (M and V1−V7) and the high reactivity of this system. EPR revealed a well-resolved hyperfine structure (hfs) typical of vanadyl ions in a C4v symmetry. FT-IR spectra showed the presence of all structural units expected for P2O5, as well as very clear depolymerization of the vitreous network induced by V2O5. The MTT assay indicated that the viability of tumor cells treated with V7-glass extract was reduced to 50% when the highest concentration was used (10 µg/mL) compared to the matrix treatment (which showed no cytotoxic effect at any concentration). Moreover, the matrix treatment (without V2O5) provided an optimal environment for tumor cell attachment and proliferation. In conclusion, the two types of treatment investigated herein were proven to be very different from a statistical point of view (p < 0.01), and the in vitro studies clearly underline the cytotoxic potential of vanadium ions from phosphate glass (V7) as an antitumor agent.
Collapse
Affiliation(s)
- Cristian Lujerdean
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Răzvan Ștefan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Dorina Simedru
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation Subsidiary (ICIA) Cluj-Napoca, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Grigore Damian
- Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Nicoleta Simona Vedeanu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Saikia G, Talukdar H, Ahmed K, Gour NK, Islam NS. Tantalum( v) peroxido complexes as phosphatase inhibitors: a comparative study vis-a-vis peroxidovanadates. NEW J CHEM 2021. [DOI: 10.1039/d1nj01005k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Peroxido Ta(v) complexes are found to be more effective as inhibitors of wheat thylakoid acid phosphatase vis-à-vis their V containing analogues. In addition, these compounds showed unique resistance towards degradation in the presence of catalase.
Collapse
Affiliation(s)
- Gangutri Saikia
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | - Hiya Talukdar
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | - Kabirun Ahmed
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | | | | |
Collapse
|
3
|
Ganapathy-Kanniappan S. Rac1 repression reverses chemoresistance by targeting tumor metabolism. Cancer Biol Ther 2020; 21:888-890. [PMID: 32866423 DOI: 10.1080/15384047.2020.1809923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor metabolism is exemplified by the increased rate of glucose utilization, a biochemical signature of cancer cells. The enhanced glucose hydrolysis enabled by the augmentation of glycolytic flux and the pentose phosphate pathway (PPP) plays a pivotal role in the growth and survival of neoplastic cells. In a recent report, it has been shown that in human breast cancer the GTP binding protein, Rac1 enables resistance to therapy, particularly against the DNA-damaging therapeutics. Significantly, the findings demonstrate that Rac1-dependent chemoresistance involves the upregulation of glycolytic flux as well as PPP. Using multiple approaches, the study demonstrates that disruption of Rac1 activity sensitizes cancer cells to DNA-damaging agents. More importantly, the data uncover a previously unknown PPP regulatory role of Rac1 in breast cancer. Finally, the authors also show the effectiveness and the feasibility of in vivo targeting of Rac1 to enhance the chemosensitivity of breast cancer. This elegant report provokes scientific curiosity to expand our understanding of the intricacies of the role and regulation of Rac1 in cancer.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Interventional Radiology, The Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
4
|
Molecular and Cellular Mechanisms of Cytotoxic Activity of Vanadium Compounds against Cancer Cells. Molecules 2020; 25:molecules25071757. [PMID: 32290299 PMCID: PMC7180481 DOI: 10.3390/molecules25071757] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.
Collapse
|
5
|
Korman DB, Nekrasova EI, Ostrovskaya LA, Ryabaya OO, Bluhterova NV, Abzaeva KA. The Sensitivity of Human Tumor Cells to the Cytotoxicity of Gold Polyacrylate (Aurumacryl). Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919060125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
7
|
Shibaeva AV, Pozdniakova NV, Spiridonov VV, Smirnova MS, Korman DB, Ostrovskaya LA, Abzaeva KA, Belyakova AV, Biryukova Y, Zylkova MV, Ivanov KP, Shevelev AB, Kuzmin VA. Synthesis of Au (III) polyacrylates and study of their tumoricidal activity. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2018. [DOI: 10.24075/brsmu.2018.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aurumacryl is an incomplete metal salt of poly(acrylic acid) that exhibits hemostatic activity and inhibits the growth of transplantable carcinomas in vivo. The samples of aurumacryl synthesized following the original technique are insufficiently soluble, which complicates the study of the mechanisms involved in their synthesis and underlying their cytotoxic effect. The aim of this work was to study the impact of the following factors on aurumacryl properties: the molecular weight of the polyacrylate polymer in a range between 2 and 1,000 kDa, the presence of a counterion H+ or Na+, the molar ratio of AuCl– to the polyacrylate polymer (1 : 5 and 1 : 10), the total concentration of the polyacrylate polymer during synthesis (0.1 and 3%), and the type of drying (lyophilization). By comparing the cytotoxicity of aurumacryl samples with significantly different molar ratio of gold ions to the polyacrylate polymer against human breast carcinoma cells (MCF-7), we established that the proportion of the polymer and its molecular weight in the sample do not affect the biological properties of the synthesized substance. Using UV spectroscopy, we revealed that the concentration of Au (III) ions in aurumacryl determines its cytotoxicity.
Collapse
Affiliation(s)
- AV Shibaeva
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow
| | - NV Pozdniakova
- N. N. Blokhin National Medical Research Center of Oncology, Moscow
| | | | - MS Smirnova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow
| | - DB Korman
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow
| | - LA Ostrovskaya
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow
| | - KA Abzaeva
- Favorsky Irkutsk Institute of Chemistry, Irkutsk
| | - AV Belyakova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow
| | - YuK Biryukova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow
| | - MV Zylkova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow
| | - KP Ivanov
- National Medical Research Center for Cardiology, Moscow
| | - AB Shevelev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow
| | - VA Kuzmin
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow
| |
Collapse
|
8
|
Saikia G, Gogoi SR, Boruah JJ, Ram BM, Begum P, Ahmed K, Sharma M, Ramakrishna G, Ramasarma T, Islam NS. Peroxo Compounds of Vanadium(V) and Niobium(V) as Potent Inhibitors of Calcineurin Activity towards RII-Phosphopeptide. ChemistrySelect 2017. [DOI: 10.1002/slct.201700935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gangutri Saikia
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Sandhya Rani Gogoi
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Jeena Jyoti Boruah
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Babul Moni Ram
- Department of molecular and cellular medicine; Institute of liver and biliary sciences; D1 Vasant Kunj New Delhi 110070 India
| | - Pakiza Begum
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Kabirun Ahmed
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Mitu Sharma
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| | - Gayatri Ramakrishna
- Department of molecular and cellular medicine; Institute of liver and biliary sciences; D1 Vasant Kunj New Delhi 110070 India
| | | | - Nashreen S. Islam
- Dept. of Chemical Sciences; Tezpur University, Napaam; Tezpur-784028, Assam India
| |
Collapse
|