1
|
Sharma H, Anand A, Halagali P, Inamdar A, Pathak R, Taghizadeh‐Hesary F, Ashique S. Advancement of Nanoengineered Flavonoids for Chronic Metabolic Diseases. ROLE OF FLAVONOIDS IN CHRONIC METABOLIC DISEASES 2024:459-510. [DOI: 10.1002/9781394238071.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Qu Y, Wang Z, Dong L, Zhang D, Shang F, Li A, Gao Y, Bai Q, Liu D, Xie X, Ming L. Natural small molecules synergize mesenchymal stem cells for injury repair in vital organs: a comprehensive review. Stem Cell Res Ther 2024; 15:243. [PMID: 39113141 PMCID: PMC11304890 DOI: 10.1186/s13287-024-03856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Mesenchymal stem cells (MSCs) therapy is a highly researched treatment that has the potential to promote immunomodulation and anti-inflammatory, anti-apoptotic, and antimicrobial activities. It is thought that it can enhance internal organ function, reverse tissue remodeling, and achieve significant organ repair and regeneration. However, the limited infusion, survival, and engraftment of transplanted MSCs diminish the effectiveness of MSCs-based therapy. Consequently, various preconditioning methods have emerged as strategies for enhancing the therapeutic effects of MSCs and achieving better clinical outcomes. In particular, the use of natural small molecule compounds (NSMs) as a pretreatment strategy is discussed in this narrative review, with a focus on their roles in regulating MSCs for injury repair in vital internal organs. Additionally, the discussion focuses on the future directions and challenges of transforming mesenchymal stem cell research into clinical applications.
Collapse
Affiliation(s)
- Yanling Qu
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Zhe Wang
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Lingjuan Dong
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Dan Zhang
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Fengqing Shang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Afeng Li
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Yanni Gao
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Qinhua Bai
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Dan Liu
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| | - Leiguo Ming
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China.
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
3
|
Xie S, Zeng M, Zhang J, Liu J, Wei J, Wang R, Li M, Hao Z, Ji B, Zheng X, Feng W. Epimesatines A-I, nine undescribed prenylated flavonoids with SPHK1 inhibitory activities from Epimedium sagittatum maxim. PHYTOCHEMISTRY 2022; 202:113314. [PMID: 35810878 DOI: 10.1016/j.phytochem.2022.113314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Epimesatines A-I, nine undescribed prenylated flavonoids, along with ten known analogues, were isolated from the aerial parts of Epimedium sagittatum Maxim. The structures and absolute configurations of epimesatines A-I were determined using a combination of spectroscopic data, Rh2(OCOCF3)4-induced electronic circular dichroism (ECD) experiments, ECD comparisons, and X-ray crystallography analysis. Epimesatines A and I displayed notable activities on the viabilities of human non-small cell lung cancer (NSCLC) A549 cells with IC50 values of 1.77 and 9.97 μM, respectively. Furthermore, epimesatines A and I significantly inhibited the expression of sphingosine kinase 1 (SPHK1) in A549 cells. In addition, none of these compounds showed obvious toxicity on normal human lung bronchial epithelial BEAS-2B cells.
Collapse
Affiliation(s)
- Shuangshuang Xie
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Jingke Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Juanjuan Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Junjun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Ru Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Meng Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Zhiyou Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China
| | - Baoyu Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China.
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China; Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou, 450046, PR China.
| |
Collapse
|
4
|
Moeini R, Memariani Z, Enayati A, Gorji N, Kolangi F. Nephrotonic and Nephroprotective medicinal herbs in traditional Persian Medicine: Review and assessment of scientific evidence. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211118145406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The tendency to use herbal and complementary therapies has been increased dramatically in last decades. The aim of this study is reviewing nephrotonic and nephroprotective medicinal herbs in traditional Persian Medicine (TPM) historical books, and assessment of relevant scientific evidence and possible mechanisms of action. In this study, seven major references among pharmaceutical books of PM from the 11th to 19th centuries were selected and were searched with key words equivalent to “nephroprotection”. To find new studies, the scientific name of medicinal herbs which were repeated twice or more were searched using data bases including PubMed, and Google scholar with keywords of nephroprotective, renal disorder, renal failure and kidney. Also, probable effective mechanisms were explored with key words including oxidative stress, antioxidant, inflammation, anti-inflammatory and angiotensin-converting-enzyme inhibitor. 210 herbal remedies were found with kidney strengthening, nephroprotective, and atrophy prevention effects in reviewed books. The most repeated herbs were 41 Results of scientific evidence showed that the possible functional mechanisms of these plants include anti-inflammatory, anti-oxidative, blood pressure/glucose-lowering effect as well as improvement of glomerular filtration, prevention of tissue damage, and enhancing the reconstructive power of cells. The list of medicinal herbs in this study can be used as a base of future studies on production of new medicines for prevention or treatment of renal failure and for the enhancement of renal performance.
Collapse
Affiliation(s)
- Reihaneh Moeini
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Memariani
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Narjes Gorji
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Kolangi
- Counseling and Reproductive Health Research Centre,Department of Persian Medicine, School of Persian Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
5
|
Wang M, Wang L, Zhou Y, Feng X, Ye C, Wang C. Icariin attenuates renal fibrosis in chronic kidney disease by inhibiting interleukin-1β/transforming growth factor-β-mediated activation of renal fibroblasts. Phytother Res 2021; 35:6204-6215. [PMID: 34426999 DOI: 10.1002/ptr.7256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
Icariin (ICA) is a bioactive flavonoid extracted from Epimedium brevicornum Maxim and exhibits a variety of pharmacological activities including antiinflammatory and antioxidant effects. Recently, icariin has shown renoprotective role by inhibiting pathological matrix. However, the underlying mechanisms of the efficacy remain unknown. This study aimed to determine the effects of icariin on renal fibrosis and explore its molecular mechanisms. Chronic kidney disease (CKD) was induced in rats with 5/6 ablation and infarction (A/I) operation. Four weeks later, rats were treated with vehicle or 20 mg/kg (low dose) or 40 mg/kg (high dose) of icariin by daily gavage. Furthermore, to further elucidate the effect mechanisms of icariin, in vitro, NRK-49F cells stimulated by 8 ng/ml IL-1β were treated with icariin in the presence or absence of SB431542 or the neutralizing antibody of transforming growth factor-β (TGF-β) for 24 h. We showed that icariin treatment for 8 weeks dose-dependently improved 5/6 (A/I)-induced kidney injury and fibrosis, and blocked the release of inflammatory cytokine IL-1β. In vitro, icariin inhibited IL-1β/TGF-β-mediated activation of renal fibroblasts. In summary, anti-fibrotic effects of icariin were interconnected with the inhibition of renal fibroblast activation caused by IL-1β/TGF-β signaling.
Collapse
Affiliation(s)
- Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxuan Feng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Wong CY. Current advances of stem cell-based therapy for kidney diseases. World J Stem Cells 2021; 13:914-933. [PMID: 34367484 PMCID: PMC8316868 DOI: 10.4252/wjsc.v13.i7.914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Kidney diseases are a prevalent health problem around the world. Multidrug therapy used in the current routine treatment for kidney diseases can only delay disease progression. None of these drugs or treatments can reverse the progression to an end-stage of the disease. Therefore, it is crucial to explore novel therapeutics to improve patients’ quality of life and possibly cure, reverse, or alleviate the kidney disease. Stem cells have promising potentials as a form of regenerative medicine for kidney diseases due to their unlimited replication and their ability to differentiate into kidney cells in vitro. Mounting evidences from the administration of stem cells in an experimental kidney disease model suggested that stem cell-based therapy has therapeutic or renoprotective effects to attenuate kidney damage while improving the function and structure of both glomerular and tubular compartments. This review summarises the current stem cell-based therapeutic approaches to treat kidney diseases, including the various cell sources, animal models or in vitro studies. The challenges of progressing from proof-of-principle in the laboratory to widespread clinical application and the human clinical trial outcomes reported to date are also highlighted. The success of cell-based therapy could widen the scope of regenerative medicine in the future.
Collapse
Affiliation(s)
- Chee-Yin Wong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Research Department, Cytopeutics, Cyberjaya 63000, Selangor, Malaysia
| |
Collapse
|
7
|
Tian J, Huang Y, Wu T, Huang HD, Ko KM, Zhu BT, Chen J. The Use of Chinese Yang/Qi-Invigorating Tonic Botanical Drugs/Herbal Formulations in Ameliorating Chronic Kidney Disease by Enhancing Mitochondrial Function. Front Pharmacol 2021; 12:622498. [PMID: 34248614 PMCID: PMC8264145 DOI: 10.3389/fphar.2021.622498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/11/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Chronic kidney disease (CKD) is a leading cause of morbidity and mortality. Mitochondrial dysfunction has been implicated as a key factor in the development of CKD. According to traditional Chinese medicine (TCM) theory, many Chinese Yang/Qi-invigorating botanical drugs/herbal formulations have been shown to produce promising outcomes in the clinical management of CKD. Experimental studies have indicated that the health-promoting action of Yang/Qi invigoration in TCM is related to the up-regulation of mitochondrial energy generation and antioxidant status. Objective: In this review, we aim to test whether Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations can provide medical benefits in CKD and its complications. And we also explore the possible involvement of mitochondrial-associated signaling pathway underlying the beneficial effects of Yang/Qi invigoration in TCM. Methods: A systematic search of "PubMed", "China National Knowledge Infrastructure (CNKI)" and "Google Scholar" was carried out to collect all the available articles in English or Chinese related to Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations and their effects on mitochondrial function and chronic kidney disease. Result and Discussion: The relationship between the progression of CKD and mitochondrial function is discussed. The effects of Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations and their active ingredients, including phytosterols/triterpenes, flavonoids, and dibenzocyclooctadiene lignans, on CKD and related alterations in mitochondrial signaling pathways are also presented in this review. In the future, exploration of the possible beneficial effects and clinical studies of more Yang- and Qi-invigorating botanical drugs/herbal formulations in the prevention and/or/treatment of CKD and the molecular mechanisms relating to the enhancement of mitochondrial functions warrants further investigation. Conclusion: Given the critical role of mitochondrial function in safeguarding renal functional integrity, the enhancement of mitochondrial energy metabolism and antioxidant status in kidney tissue is likely involved in renal protection. Future studies on the biochemical and chemical basis underlying the effects of Chinese Yang/Qi-invigorating tonic botanical drugs/herbal formulations from a mitochondrial perspective will hopefully provide novel insights into the rational development of new drugs for the prevention and/or treatment of CKD.
Collapse
Affiliation(s)
- Jiayi Tian
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yuqi Huang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Tong Wu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China
| | - Kam Ming Ko
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Jihang Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
8
|
Combined protective effects of icariin and selenomethionine on novel chronic tubulointerstitial nephropathy models in vivo and in vitro. Br J Nutr 2021; 127:12-22. [PMID: 33663624 DOI: 10.1017/s0007114521000787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic tubulointerstitial nephropathy (CTIN) is one of the most common kidney diseases. However, treatment for CTIN has multiple limits. Adjuvant therapy through nutritional regulation has become a hot research topic at present. Icariin (ICA), an extraction of Chinese herbal medicine epimedium, has many pharmacological functions including anti-inflammation and tonifying kidney. Selenomethionine (SeMet) possesses the effects of antioxidant and lightening nephrotoxicity. However, little is known about the combined nephroprotection of them. This study was investigated to evaluate the joint effects of ICA and SeMet on CTIN and explore the mechanism. Based on a novel CTIN model developed in our previous study, mice were randomly divided into five groups (a: control; b: model; c: model + ICA; d: model + SeMet; e: model + ICA + SeMet). Renal tubule epithelial cells were treated with cyclosporine A and ochratoxin A without/with ICA or/and SeMet. The results showed that ICA or/and SeMet ameliorated CTIN by inhibiting the uptrends of blood urine nitrogen, serum creatinine, urine protein, urine gravity, histopathological damage degree and collagen I deposition. ICA or/and SeMet also increased cell proliferation and decreased apoptosis and the expression of transforming growth factor-beta 1 and α-smooth muscle actin. Emphatically, ICA and SeMet joint had better nephroprotection than alone in most indexes including fibrosis. Furthermore, ICA and SeMet joint decreased the activation of toll-like receptor 4 (TLR4)/NFκB pathway induced by CTIN. TLR4 overexpression counteracted the joint protection of ICA and SeMet. Therefore, ICA and SeMet in combination could protect against CTIN through blocking TLR4/NFκB pathway. The study will provide novel insights to explore an adjuvant therapeutic orientation.
Collapse
|
9
|
Yoon JW, Lee SE, Park YG, Kim WJ, Park HJ, Park CO, Kim SH, Oh SH, Lee DG, Pyeon DB, Kim EY, Park SP. The antioxidant icariin protects porcine oocytes from age-related damage in vitro. Anim Biosci 2020; 34:546-557. [PMID: 32777912 PMCID: PMC7961286 DOI: 10.5713/ajas.20.0046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE If fertilization does not occur within a specific period, the quality of unfertilized oocytes in the oviduct (in vivo aging) or in culture (in vitro aging) will deteriorate over time. Icariin (ICA), found in all species of Epimedium herbs, has strong antioxidant activity, and is thought to exert anti-aging effects in vitro. We asked whether ICA protects oocytes against age-related changes in vitro. METHODS We analyzed the reactive oxygen species (ROS) levels and expression of antioxidant, maternal, and estrogen receptor genes, and along with spindle morphology, and the developmental competence and quality of embryos in the presence and absence of ICA. RESULTS Treatment with 5 μM ICA (ICA-5) led to a significant reduction in ROS activity, but increased mRNA expression of glutathione and antioxidant genes (superoxide dismutase 1 [SOD1], SOD2, peroxiredoxin 5, and nuclear factor erythroid 2-like 2), during aging in vitro. In addition, ICA-5 prevented defects in spindle formation and chromosomal alignment, and increased mRNA expression of cytoplasmic maturation factor genes (bone morphogenetic protein 15, cyclin B1, MOS proto-oncogene, serine/threonine kinase, and growth differentiation factor-9). It also prevented apoptosis, increased mRNA expression of antiapoptotic genes (BCL2-like 1 and baculoviral IAP repeat-containing 5), and reduced mRNA expression of pro-apoptotic genes (BCL2 antagonist/killer 1 and activation of caspase-3). Although the maturation and cleavage rates were similar in all groups, the total cell number per blastocyst and the percentage of apoptotic cells at the blastocyst stage were higher and lower, respectively, in the control and ICA-5 groups than in the aging group. CONCLUSION ICA protects oocytes against damage during aging in vitro; therefore, it can be used to improve assisted reproductive technologies.
Collapse
Affiliation(s)
- Jae-Wook Yoon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Seung-Eun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Yun-Gwi Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Won-Jae Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Hyo-Jin Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Chan-Oh Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - So-Hee Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Seung-Hwan Oh
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Do-Geon Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Da-Bin Pyeon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea.,Mirae Cell Bio, Seoul 04795, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea.,Mirae Cell Bio, Seoul 04795, Korea
| |
Collapse
|
10
|
Georgiadis G, Zisis IE, Docea AO, Tsarouhas K, Fragkiadoulaki I, Mavridis C, Karavitakis M, Stratakis S, Stylianou K, Tsitsimpikou C, Calina D, Sofikitis N, Tsatsakis A, Mamoulakis C. Current Concepts on the Reno-Protective Effects of Phosphodiesterase 5 Inhibitors in Acute Kidney Injury: Systematic Search and Review. J Clin Med 2020; 9:jcm9051284. [PMID: 32365529 PMCID: PMC7287956 DOI: 10.3390/jcm9051284] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is associated with increased morbidity, prolonged hospitalization, and mortality, especially in high risk patients. Phosphodiesterase 5 inhibitors (PDE5Is), currently available as first-line therapy of erectile dysfunction in humans, have shown a beneficial potential of reno-protection through various reno-protective mechanisms. The aim of this work is to provide a comprehensive overview of the available literature on the reno-protective properties of PDE5Is in the various forms of AKI. Medline was systematically searched from 1946 to November 2019 to detect all relevant animal and human studies in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. In total, 83 studies were included for qualitative synthesis. Sildenafil is the most widely investigated compound (42 studies), followed by tadalafil (20 studies), icariin (10 studies), vardenafil (7 studies), zaprinast (4 studies), and udenafil (2 studies). Even though data are limited, especially in humans with inconclusive or negative results of only two clinically relevant studies available at present, the results of animal studies are promising. The reno-protective action of PDE5Is was evident in the vast majority of studies, independently of the AKI type and the agent applied. PDE5Is appear to improve the renal functional/histopathological alternations of AKI through various mechanisms, mainly by affecting regional hemodynamics, cell expression, and mitochondrial response to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Georgios Georgiadis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece; (G.G.); (I.-E.Z.); (I.F.); (C.M.); (M.K.)
| | - Ioannis-Erineos Zisis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece; (G.G.); (I.-E.Z.); (I.F.); (C.M.); (M.K.)
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, Crete 71003, Greece;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Irene Fragkiadoulaki
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece; (G.G.); (I.-E.Z.); (I.F.); (C.M.); (M.K.)
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, Crete 71003, Greece;
| | - Charalampos Mavridis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece; (G.G.); (I.-E.Z.); (I.F.); (C.M.); (M.K.)
| | - Markos Karavitakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece; (G.G.); (I.-E.Z.); (I.F.); (C.M.); (M.K.)
| | - Stavros Stratakis
- Department of Nephrology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece; (S.S.); (K.S.)
| | - Kostas Stylianou
- Department of Nephrology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece; (S.S.); (K.S.)
| | - Christina Tsitsimpikou
- Department of Hazardous Substances, Mixtures and Articles, General Chemical State Laboratory of Greece, Ampelokipi, Athens, Greece;
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Nikolaos Sofikitis
- Department of Urology, School of Medicine, Ioannina University, Ioannina, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, Crete 71003, Greece;
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, Crete, Greece; (G.G.); (I.-E.Z.); (I.F.); (C.M.); (M.K.)
- Correspondence:
| |
Collapse
|
11
|
Zhuang Q, Ma R, Yin Y, Lan T, Yu M, Ming Y. Mesenchymal Stem Cells in Renal Fibrosis: The Flame of Cytotherapy. Stem Cells Int 2019; 2019:8387350. [PMID: 30766607 PMCID: PMC6350586 DOI: 10.1155/2019/8387350] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Renal fibrosis, as the fundamental pathological process of chronic kidney disease (CKD), is a pathologic extension of the normal wound healing process characterized by endothelium injury, myofibroblast activation, macrophage migration, inflammatory signaling stimulation, matrix deposition, and remodelling. Yet, the current method of treating renal fibrosis is fairly limited, including angiotensin-converting enzyme inhibition, angiotensin receptor blockade, optimal blood pressure control, and sodium bicarbonate for metabolic acidosis. MSCs are pluripotent adult stem cells that can differentiate into various types of tissue lineages, such as the cartilage (chondrocytes), bone (osteoblasts), fat (adipocytes), and muscle (myocytes). Because of their many advantages like ubiquitous sources, convenient procurement and collection, low immunogenicity, and low adverse effects, with their special identification markers, mesenchymal stem MSC-based therapy is getting more and more attention. Based on the mechanism of renal fibrosis, MSCs mostly participate throughout the renal fibrotic process. According to the latest and overall literature reviews, we aim to elucidate the antifibrotic mechanisms and effects of diverse sources of MSCs on renal fibrosis, assess their efficacy and safety in preliminarily clinical application, answer the controversial questions, and provide novel ideas into the MSC cellular therapy of renal fibrosis.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Ruoyu Ma
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yanshuang Yin
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Tianhao Lan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Yu
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| | - Yingzi Ming
- Transplantation Center of The 3rd Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Research Center of National Health Ministry on Transplantation Medicine, Changsha, Hunan 410013, China
| |
Collapse
|
12
|
Ren Y, Zhu F, Liu Z. Inhibitory effect of icariin on osteosarcoma cell proliferation via the Wnt/β-catenin signaling pathway. Oncol Lett 2018; 16:1405-1410. [PMID: 30008817 PMCID: PMC6036372 DOI: 10.3892/ol.2018.8821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma, is a kind of malignant tumor derived from malignant interstitial cells. The pathogenesis of osteosarcoma remains unclear and despite use of chemotherapy drugs, resistance to these drugs affects the success of treatment. The present study was conducted to investigate the effects of icariin (ICA) on osteosarcoma cell proliferation and to investigate the role of the Wnt/β-catenin signaling pathway in the inhibition process of ICA on osteosarcoma cell proliferation. Different concentrations of ICA were selected to treat the osteosarcoma cell line 143B for 24 h, and then the onset concentration of ICA when it inhibited the growth of osteosarcoma cancer cell line 143B was detected via an MTT assay. The effect of ICA on the apoptosis of colon cancer cell line 143B under this concentration was detected using a flow cytometer. RNA in osteosarcoma cell line 143B was extracted, followed by reverse transcription. The expression levels of related and apoptotic proteins in the Wnt/β-catenin signaling pathway using ICA were detected by semi-quantitative PCR and western blot analysis, respectively. The expression quantities of vascular endothelial growth factor (VEGF) and MMP-9 were detected by ELISA. MTT assay showed that ICA inhibited the growth of 143B when its concentration was 5 µM (p<0.01). Flow cytometry showed that the number of apoptotic cells after ICA treatment was significantly higher than that in control group (p<0.01). RNA in osteosarcoma cell line 143B was extracted, followed by reverse transcription. Semi-quantitative PCR and western blot analysis revealed that the expression levels of p-GSK3β, β-catenin, c-Myc and cyclin D1 in cells after ICA treatment were significantly downregulated (p<0.01), while the expression level of caspase-3 was significantly increased (p<0.01). ELISA showed that the expression quantities of VEGF and MMP-9 were significantly decreased (p<0.01). Thus, ICA can significantly inhibit osteosarcoma cell proliferation and promote osteosarcoma cell apoptosis, which may be realized by affecting the expression of the Wnt/β-catenin signaling pathway and blocking the expression of related proteins.
Collapse
Affiliation(s)
- Yuxin Ren
- Department of Spinal Surgery, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Fuqiang Zhu
- Department of Spinal Surgery, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Zhendong Liu
- Department of Orthopedics, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| |
Collapse
|
13
|
Zhou S, Liu YG, Zhang Y, Hu JM, Liu D, Chen H, Li M, Guo Y, Fan LP, Li LY, Zhao M. Bone mesenchymal stem cells pretreated with erythropoietin enhance the effect to ameliorate cyclosporine A-induced nephrotoxicity in rats. J Cell Biochem 2018; 119:8220-8232. [PMID: 29932236 DOI: 10.1002/jcb.26833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/09/2018] [Indexed: 01/13/2023]
Abstract
An increasing number of experiments and clinical trials have demonstrated the safety, feasibility, and efficacy of mesenchymal stem cells (MSCs)-based therapies for the treatment of various diseases. The main drawbacks of MSC therapy are the lack of specific homing after systemic infusion and early death of injected cells because of the injury micro-environment. We pretreated bone mesenchymal stem cells (BMSCs) with erythropoietin (EPO) to investigate their positive effect on cyclosporine A (CsA)-induced nephrotoxicity. BMSCs were incubated with different concentrations of EPO (10, 100, 500, and 1000 IU/mL) for 24 and 48 h, and their proliferation rate, cytoskeletal morphology, migration ability, and the expression of CXCR4 were evaluated to determine the optimal pretreatment conditions. To investigate the therapeutic effects of BMSCs pretreated with EPO in CsA-induced nephrotoxicity, we established CsA-induced in vitro and in vivo toxicity models. In our in vitro study, preconditioning of BMSCs with 500 IU/mL EPO for 48 h induced a marked increase in their proliferation rate, cytoskeletal rearrangement, migration in the scrape-healing assay, and migration toward injured HK2 cells. In vivo, EPO-BMSCs showed higher ability to improve renal function than BMSCs, and in CsA-induced rats treated with EPO-BMSCs, interstitial lymphocyte infiltration, tubular swelling, necrosis, and interstitial fibrosis decreased. We demonstrated that pretreatment with 500 IU/mL EPO before infusion markedly increased the homing ability of BMSCs, and obviously ameliorate CsA-induced nephrotoxicity in rats.
Collapse
Affiliation(s)
- Song Zhou
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yong-Guang Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ya Zhang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jian-Min Hu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ding Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hua Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Min Li
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ying Guo
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Li-Pei Fan
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liu-Yang Li
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,The Key Laboratory of Inflammation and Autoimmune Diseases, Guangzhou, Guangdong Province, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Vargas F, Romecín P, García-Guillén AI, Wangesteen R, Vargas-Tendero P, Paredes MD, Atucha NM, García-Estañ J. Flavonoids in Kidney Health and Disease. Front Physiol 2018; 9:394. [PMID: 29740333 PMCID: PMC5928447 DOI: 10.3389/fphys.2018.00394] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
This review summarizes the latest advances in knowledge on the effects of flavonoids on renal function in health and disease. Flavonoids have antihypertensive, antidiabetic, and antiinflammatory effects, among other therapeutic activities. Many of them also exert renoprotective actions that may be of interest in diseases such as glomerulonephritis, diabetic nephropathy, and chemically-induced kidney insufficiency. They affect several renal factors that promote diuresis and natriuresis, which may contribute to their well-known antihypertensive effect. Flavonoids prevent or attenuate the renal injury associated with arterial hypertension, both by decreasing blood pressure and by acting directly on the renal parenchyma. These outcomes derive from their interference with multiple signaling pathways known to produce renal injury and are independent of their blood pressure-lowering effects. Oral administration of flavonoids prevents or ameliorates adverse effects on the kidney of elevated fructose consumption, high fat diet, and types I and 2 diabetes. These compounds attenuate the hyperglycemia-disrupted renal endothelial barrier function, urinary microalbumin excretion, and glomerular hyperfiltration that results from a reduction of podocyte injury, a determinant factor for albuminuria in diabetic nephropathy. Several flavonoids have shown renal protective effects against many nephrotoxic agents that frequently cause acute kidney injury (AKI) or chronic kidney disease (CKD), such as LPS, gentamycin, alcohol, nicotine, lead or cadmium. Flavonoids also improve cisplatin- or methotrexate-induced renal damage, demonstrating important actions in chemotherapy, anticancer and renoprotective effects. A beneficial prophylactic effect of flavonoids has been also observed against AKI induced by surgical procedures such as ischemia/reperfusion (I/R) or cardiopulmonary bypass. In several murine models of CKD, impaired kidney function was significantly improved by the administration of flavonoids from different sources, alone or in combination with stem cells. In humans, cocoa flavanols were found to have vasculoprotective effects in patients on hemodialysis. Moreover, flavonoids develop antitumor activity against renal carcinoma cells with no toxic effects on normal cells, suggesting a potential therapeutic role in patients with renal carcinoma.
Collapse
Affiliation(s)
- Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - Paola Romecín
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Ana I García-Guillén
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Rosemary Wangesteen
- Departamento de Ciencias de la Salud, Area de Fisiología, Universidad de Jaén, Jaén, Spain
| | - Pablo Vargas-Tendero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - M Dolores Paredes
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Noemí M Atucha
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| | - Joaquín García-Estañ
- Departamento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
15
|
Geng Z, Wei L, Zhang C, Yan X. Astragalus polysaccharide, a component of traditional Chinese medicine, inhibits muscle cell atrophy (cachexia) in an in vivo and in vitro rat model of chronic renal failure by activating the ubiquitin-proteasome pathway. Exp Ther Med 2017; 14:91-96. [PMID: 28672898 PMCID: PMC5488485 DOI: 10.3892/etm.2017.4492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/17/2017] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to determine the effect of Astragalus polysaccharide (APS) in an in vivo and in vitro rat model of muscle atrophy (cachexia) caused by chronic renal failure (CRF), along with the potential corresponding roles of atroglin-1 and the ubiquitin-proteasome pathway. A rat model of CRF was established using subtotal bilateral nephrectomy. It was observed by reverse transcription-quantitative polymerase chain reaction and western blot analysis that APS and the specific inhibitor of nuclear factor (NF)-κB, pyrrolidine dithiocarbamate (PDTC), significantly reduced the expression of atrogin-1, ubiquitin and the NF-κB subunit p65 mRNA in rat skeletal muscle in vivo and in vitro, respectively (P<0.05). NF-κB and PDTC also markedly reduced the expression of atrogin-1, ubiquitin and p65 protein. In addition, cultured rat myoblasts pretreated with tumor necrosis factor (TNF)-α exhibited significantly reduced expression of atrogin-1, ubiquitin and p65 mRNA in vitro (P<0.05). Fluorescence microscopy was subsequently used to evaluate TNF-α-treated myoblasts administered with APS or PDTC, whereby no evidence of muscle cell atrophy was observed in cells treated with APS. These data suggest that APS may delay muscle cell atrophy associated with cachexia in CRF by targeting atrogin-1 and the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Zhenbo Geng
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China.,Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Lianbo Wei
- Nephropathy Center of Integrated Traditional Chinese Medicine and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chunhua Zhang
- Department of Traditional Chinese Medicine, Weihai City Chinese Hospital, Weihai, Shandong 264200, P.R. China
| | - Xiaohua Yan
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|