1
|
Todorović D, Stojanović M, Mutavdžin Krneta S, Jakovljević Uzelac J, Gopčević K, Medić A, Labudović Borović M, Stanković S, Djuric DM. Effects of four-week lasting aerobic treadmill training on hepatic injury biomarkers, oxidative stress parameters, metabolic enzymes activities and histological characteristics in liver tissue of hyperhomocysteinemic rats. Mol Cell Biochem 2024:10.1007/s11010-024-05133-7. [PMID: 39384708 DOI: 10.1007/s11010-024-05133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Disruptions in homocysteine (Hcy) metabolism may increase the liver's susceptibility to developing conditions such as alcoholic liver disease, viral hepatitis, hepatocellular carcinoma (HCC), and cirrhosis. The aim of this study was to examine effects of aerobic treadmill training on hepatic injury biomarkers in sera, oxidative stress parameters, the activity of metabolic enzymes, and histological characteristics in the liver tissue of rats with experimentally induced hyperhomocysteinemia. Male Wistar albino rats were divided into four groups (N = 10, per group): C-saline 0.2 mL/day sc. 2×/day for 14 days + saline 0.5 mL ip.1×/day for 28 days; H-homocysteine 0.45 µmol/g b.w. 2×/day for 14 days + saline 0.5 mL ip.1×/day for 28 days; CPA-saline 0.2 mL/day sc. 2×/day for 14 days + aerobic treadmill training for 28 days; and HPA-homocysteine 0.45 µmol/g b.w. 2×/day for 14 days + aerobic treadmill training for 28 days. The serum albumin concentration was decreased in both physically active (PA) groups compared to sedentary groups. Concentration of malondialdehyde in liver tissue homogenates was lower in both PA groups compared to the H group. The total lactate dehydrogenase and malate dehydrogenase activities were significantly elevated in the HPA group compared to the C and H groups. Activities of aminotransferases in sera samples, and activities of catalase and superoxide dismutase in liver tissue did not significantly differ between groups. No significant histological changes were found in liver tissue in groups. This study demonstrated that aerobic treadmill training can reduce lipid peroxidation in liver tissue under hyperhomocysteinemic conditions, providing a protective effect. However, hyperhomocysteinemia can alter energy metabolism during aerobic exercise, shifting it toward anaerobic pathways and leading to elevated lactate dehydrogenase activity in the liver. Given that conditions like hyperhomocysteinemia are associated with an increased risk of cardiovascular diseases and liver damage, understanding how exercise influences these dynamics could guide therapeutic approaches.
Collapse
Grants
- Grant No. 175043, No. 200110/00402, and No. 451-03-66/2024-03/200110 Ministry of Science, Technological Development and Innovation of the Republic of Serbia
- Grant No. 175043, No. 200110/00402, and No. 451-03-66/2024-03/200110 Ministry of Science, Technological Development and Innovation of the Republic of Serbia
- Grant No. 175043, No. 200110/00402, and No. 451-03-66/2024-03/200110 Ministry of Science, Technological Development and Innovation of the Republic of Serbia
- Grant No. 175043, No. 200110/00402, and No. 451-03-66/2024-03/200110 Ministry of Science, Technological Development and Innovation of the Republic of Serbia
- Grant No. 175043, No. 200110/00402, and No. 451-03-66/2024-03/200110 Ministry of Science, Technological Development and Innovation of the Republic of Serbia
- Grant No. 175043, No. 200110/00402, and No. 451-03-66/2024-03/200110 Ministry of Science, Technological Development and Innovation of the Republic of Serbia
- Grant No. 175043, No. 200110/00402, and No. 451-03-66/2024-03/200110 Ministry of Science, Technological Development and Innovation of the Republic of Serbia
- Grant No. 175043, No. 200110/00402, and No. 451-03-66/2024-03/200110 Ministry of Science, Technological Development and Innovation of the Republic of Serbia
- Grant No. 175043, No. 200110/00402, and No. 451-03-66/2024-03/200110 Ministry of Science, Technological Development and Innovation of the Republic of Serbia
Collapse
Affiliation(s)
- Dušan Todorović
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - Marija Stojanović
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - Slavica Mutavdžin Krneta
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - Jovana Jakovljević Uzelac
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - Kristina Gopčević
- Faculty of Medicine, Institute of Chemistry in Medicine "Petar Matavulj", University of Belgrade, Belgrade, Serbia
| | - Ana Medić
- Faculty of Medicine, Institute of Chemistry in Medicine "Petar Matavulj", University of Belgrade, Belgrade, Serbia
| | - Milica Labudović Borović
- Faculty of Medicine, Institute of Histology and Embryology "Aleksandar Dj. Kostic", University of Belgrade, Belgrade, Serbia
| | - Sanja Stanković
- Center for Medical Biochemistry, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragan M Djuric
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
2
|
Zhang Z, Chen Y, Bian Y, Wang TT, Wang M. Cellular metabolomics study of the antitumor mechanism of Sijunzi decoction combined with mitomycin C. Biomed Chromatogr 2024; 38:e5941. [PMID: 38924132 DOI: 10.1002/bmc.5941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/28/2024]
Abstract
Mitomycin C (MMC) has an antitumor effect and is considered as a broad-spectrum antibiotic. Sijunzi Decoction (SJZD), a well-known ancient Chinese prescription, is widely used in the treatment of cancer when combined with chemotherapy drugs. Studies have shown that SJZD can be combined with other drugs to enhance the therapeutic effect against cancer and inhibit the toxicity of chemotherapy drugs, but the specific mechanism is not clear. Thus, we hope to further explore the antitumor mechanism of combined SJZD and MMC. 3-(4,5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, flow cytometry, western blot, 1H NMR and HPLC-MS were used to study the mechanism at the cellular level. The results show that the combined administration can have a more significant effect on inhibiting the proliferation of cancer cells, promoting their apoptosis. Based on metabolomics, 38 biomarkers were found in the MMC group and 43 biomarkers were found in the combined administration group. Among them, 18 unique biomarkers were discovered in the combined administration group. Studies have shown that the antitumor mechanism of combined administration is related to amino acid metabolism, energy metabolism, lipid metabolism and nucleotide metabolism, among which amino acid metabolism is the most important. In addition, SJZD achieves the effect of toxin reduction and efficiency enhancement by improving the body's immunity and improving the oxidative stress environment.
Collapse
Affiliation(s)
- Zhiru Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yanggang Bian
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Tian Tian Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Stojanović M, Todorović D, Gopčević K, Medić A, Labudović Borović M, Despotović S, Djuric D. Effects of Aerobic Treadmill Training on Oxidative Stress Parameters, Metabolic Enzymes, and Histomorphometric Changes in Colon of Rats with Experimentally Induced Hyperhomocysteinemia. Int J Mol Sci 2024; 25:1946. [PMID: 38396625 PMCID: PMC10888247 DOI: 10.3390/ijms25041946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to investigate the effects of aerobic treadmill training regimen of four weeks duration on oxidative stress parameters, metabolic enzymes, and histomorphometric changes in the colon of hyperhomocysteinemic rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C, 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.) 2x/day; H, homocysteine 0.45 µmol/g b.w./day s.c. 2x/day; CPA, saline (0.9% NaCl 0.2 mL/day s.c. 2x/day) and an aerobic treadmill training program; and HPA, homocysteine (0.45 µmol/g b.w./day s.c. 2x/day) and an aerobic treadmill training program. The HPA group had an increased level of malondialdehyde (5.568 ± 0.872 μmol/mg protein, p = 0.0128 vs. CPA (3.080 ± 0.887 μmol/mg protein)), catalase activity (3.195 ± 0.533 U/mg protein, p < 0.0001 vs. C (1.467 ± 0.501 U/mg protein), p = 0.0012 vs. H (1.955 ± 0.293 U/mg protein), and p = 0.0003 vs. CPA (1.789 ± 0.256 U/mg protein)), and total superoxide dismutase activity (9.857 ± 1.566 U/mg protein, p < 0.0001 vs. C (6.738 ± 0.339 U/mg protein), p < 0.0001 vs. H (6.015 ± 0.424 U/mg protein), and p < 0.0001 vs. CPA (5.172 ± 0.284 U/mg protein)) were detected in the rat colon. In the HPA group, higher activities of lactate dehydrogenase (2.675 ± 1.364 mU/mg protein) were detected in comparison to the CPA group (1.198 ± 0.217 mU/mg protein, p = 0.0234) and higher activities of malate dehydrogenase (9.962 (5.752-10.220) mU/mg protein) were detected in comparison to the CPA group (4.727 (4.562-5.299) mU/mg protein, p = 0.0385). Subchronic treadmill training in the rats with hyperhomocysteinemia triggers the colon tissue antioxidant response (by increasing the activities of superoxide dismutase and catalase) and elicits an increase in metabolic enzyme activities (lactate dehydrogenase and malate dehydrogenase). This study offers a comprehensive assessment of the effects of aerobic exercise on colonic tissues in a rat model of hyperhomocysteinemia, evaluating a range of biological indicators including antioxidant enzyme activity, metabolic enzyme activity, and morphometric parameters, which suggested that exercise may confer protective effects at both the physiological and morphological levels.
Collapse
Affiliation(s)
- Marija Stojanović
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Todorović
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Kristina Gopčević
- Institute of Chemistry in Medicine "Petar Matavulj", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Medić
- Institute of Chemistry in Medicine "Petar Matavulj", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Labudović Borović
- Institute of Histology and Embryology "Aleksandar Ð. Kostić", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanja Despotović
- Institute of Histology and Embryology "Aleksandar Ð. Kostić", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dragan Djuric
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Liu JX, Zhu KC, Guo HY, Liu BS, Zhang N, Zhang DC. Effects of cysteine addition to low-fishmeal diets on the growth, anti-oxidative stress, intestine immunity, and Streptococcus agalactiae resistance in juvenile golden pompano (Trachinotus ovatus). Front Immunol 2022; 13:1066936. [DOI: 10.3389/fimmu.2022.1066936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
As the precursor of taurine, cysteine serves physiological functions, such as anti-oxidative stress and immune improvement. Investigation of cysteine and its derivatives has made positive progress in avian and mammalian species, yet the study and application of cysteine in aquatic animals are relatively rare. Therefore, we evaluated the effects of supplementing a low-fishmeal diet with various levels of cysteine on the growth, antioxidant capacity, intestine immunity, and resistance against Streptococcus agalactiae of the juvenile golden pompano (Trachinotus ovatus). According to our study, exogenous supplementation with 0.6-1.2% cysteine greatly increased the final body weight (FBW) and specific growth rate (SGR) of golden pompano compared to the control group. Under the present conditions, the optimum dietary cysteine supplementation level for golden pompano was 0.91% based on the polynomial regression analysis of SGR. Meanwhile, we found that the Nrf2/Keap1/HO-1 signaling pathway was notably upregulated with the increase of exogenous cysteine, which increased antioxidant enzyme activity in serum and gene expression in the intestine and reduced the level of reactive oxygen species (ROS) in the serum of golden pompano. In addition, morphological analysis of the midgut demonstrated that exogenous cysteine improved muscle thickness and villi length, which suggested that the physical barrier of the intestine was greatly strengthened by cysteine. Moreover, cysteine increased the diversity and relative abundance of the intestinal flora of golden pompano. Cysteine suppressed intestinal NF-κB/IKK/IκB signaling and pro-inflammatory cytokine mRNA levels. Conversely, intestinal anti-inflammatory cytokine gene expression and serum immune parameters were upregulated with the supplementary volume of cysteine and improved intestine immunity. Further, exogenous cysteine supplementation greatly reduced the mortality rate of golden pompano challenged with S. agalactiae. In general, our findings provide more valuable information and new insights into the rational use of cysteine in the culture of healthy aquatic animals.
Collapse
|
5
|
Zanandrea R, Wiprich MT, Altenhofen S, Rubensam G, Dos Santos TM, Wyse ATS, Bonan CD. Withdrawal Effects Following Methionine Exposure in Adult Zebrafish. Mol Neurobiol 2020; 57:3485-3497. [PMID: 32533465 DOI: 10.1007/s12035-020-01970-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Methionine (Met) has important functions for homeostasis of various species, including zebrafish. However, the increased levels of this amino acid in plasma, a condition known as hypermethioninemia, can lead to cell alterations. Met is crucial for the methylation process and its excesses interfere with the cell cycle, an effect that persists even after the removal of this amino acid. Some conditions may lead to a transient increase of this amino acid with unexplored persistent effects of Met exposure. In the present study, we investigated the behavioral and neurochemical effects after the withdrawal of Met exposure. Zebrafish were divided into two groups: control and Met-treated group (3 mM) for 7 days and after maintained for 8 days in tanks containing only water. In the eighth day post-exposure, we evaluated locomotion, anxiety, aggression, social interaction, and memory, as well as oxidative stress parameters, amino acid, and neurotransmitter levels in the zebrafish brain. Our results showed that 8 days after Met exposure, the treated group showed decreased locomotion and aggressive responses, as well as impaired aversive memory. The Met withdrawal did not change thiobarbituric acid reactive substances, reactive oxygen species, and nitrite levels; however, we observed a decrease in antioxidant enzymes superoxide dismutase, catalase, and total thiols. Epinephrine and cysteine levels were decreased after the Met withdrawal whereas carnitine and creatine levels were elevated. Our findings indicate that a transient increase in Met causes persistent neurotoxicity, observed by behavioral and cognitive changes after Met withdrawal and that the mechanisms underlying these effects are related to changes in antioxidant system, amino acid, and neurotransmitter levels.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Rubensam
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Djuric D, Jakovljevic V, Zivkovic V, Srejovic I. Homocysteine and homocysteine-related compounds: an overview of the roles in the pathology of the cardiovascular and nervous systems. Can J Physiol Pharmacol 2018; 96:991-1003. [PMID: 30130426 DOI: 10.1139/cjpp-2018-0112] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Homocysteine, an amino acid containing a sulfhydryl group, is an intermediate product during metabolism of the amino acids methionine and cysteine. Hyperhomocysteinemia is used as a predictive risk factor for cardiovascular disorders, the stroke progression, screening for inborn errors of methionine metabolism, and as a supplementary test for vitamin B12 deficiency. Two organic systems in which homocysteine has the most harmful effects are the cardiovascular and nervous system. The adverse effects of homocysteine are achieved by the action of several different mechanisms, such as overactivation of N-methyl-d-aspartate receptors, activation of Toll-like receptor 4, disturbance in Ca2+ handling, increased activity of nicotinamide adenine dinucleotide phosphate-oxidase and subsequent increase of production of reactive oxygen species, increased activity of nitric oxide synthase and nitric oxide synthase uncoupling and consequent impairment in nitric oxide and reactive oxygen species synthesis. Increased production of reactive species during hyperhomocysteinemia is related with increased expression of several proinflammatory cytokines, including IL-1β, IL-6, TNF-α, MCP-1, and intracellular adhesion molecule-1. All these mechanisms contribute to the emergence of diseases like atherosclerosis and related complications such as myocardial infarction, stroke, aortic aneurysm, as well as Alzheimer disease and epilepsy. This review provides evidence that supports the causal role for hyperhomocysteinemia in the development of cardiovascular disease and nervous system disorders.
Collapse
Affiliation(s)
- Dragan Djuric
- a Institute of Medical Physiology "Richard Burian" Faculty of Medicine, University of Belgrade, Visegradska 26, Belgrade 11000, Serbia
| | - Vladimir Jakovljevic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia.,c Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st. 8, Moscow 119991, Russia
| | - Vladimir Zivkovic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia
| | - Ivan Srejovic
- b Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, Kragujevac 34000, Serbia
| |
Collapse
|
7
|
Subchronic methionine load induces oxidative stress and provokes biochemical and histological changes in the rat liver tissue. Mol Cell Biochem 2018; 448:43-50. [PMID: 29423685 DOI: 10.1007/s11010-018-3311-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/27/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to assess the effects of L-cysteine (Cys) (7 mg/kg) and N-acetyl-L-cysteine (NAC) (50 mg/kg) in the rat liver caused by subchronic i.p. application of methionine (Met) (0.8 mmol/kg) during 21 days. Malondialdehyde (MDA) concentration, glutathione content (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and acetylcholinesterase (AchE) activities were determined in the liver tissue and activities of liver enzymes (AST, ALT, ALP, and GGT) and concentrations of total proteins and albumin were determinated in plasma/serum. Catalase, superoxide dismutase, and acetylcholinesterase activities were increased by Cys and NAC. Met caused periportal mononuclear infiltration and rare focal necrosis of hepatocytes. In Cys- and NAC-supplemented groups, intracellular edema and microvesicular fatty changes without necrosis were noticed. We observed decrease of AST, ALT, and ALP activity in the methionine-treated group. Our results indicate that Cys and NAC application can increase activity of antioxidative enzymes and prevent intensive histological changes in liver in condition of subchronic methionine exposure.
Collapse
|