1
|
Tran ANT, Kim HY, Oh SY, Kim HS. CD49f and CD146: A Possible Crosstalk Modulates Adipogenic Differentiation Potential of Mesenchymal Stem Cells. Cells 2023; 13:55. [PMID: 38201259 PMCID: PMC10778538 DOI: 10.3390/cells13010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The lack of appropriate mesenchymal stem cells (MSCs) selection methods has given the challenges for standardized harvesting, processing, and phenotyping procedures of MSCs. Genetic engineering coupled with high-throughput proteomic studies of MSC surface markers arises as a promising strategy to identify stem cell-specific markers. However, the technical limitations are the key factors making it less suitable to provide an appropriate starting material for the screening platform. A more accurate, easily accessible approach is required to solve the issues. METHODS This study established a high-throughput screening strategy with forward versus side scatter gating to identify the adipogenesis-associated markers of bone marrow-derived MSCs (BMSCs) and tonsil-derived MSCs (TMSCs). We classified the MSC-derived adipogenic differentiated cells into two clusters: lipid-rich cells as side scatter (SSC)-high population and lipid-poor cells as SSC-low population. By screening the expression of 242 cell surface proteins, we identified the surface markers which exclusively found in lipid-rich subpopulation as the specific markers for BMSCs and TMSCs. RESULTS High-throughput screening of the expression of 242 cell surface proteins indicated that CD49f and CD146 were specific for BMSCs and TMSCs. Subsequent immunostaining confirmed the consistent specific expression of CD49f and CD146 and in BMSCs and TMSCs. Enrichment of MSCs by CD49f and CD146 surface markers demonstrated that the simultaneous expression of CD49f and CD146 is required for adipogenesis and osteogenesis of mesenchymal stem cells. Furthermore, the fate decision of MSCs from different sources is regulated by distinct responses of cells to differentiation stimulations despite sharing a common CD49f+CD146+ immunophenotype. CONCLUSIONS We established an accurate, robust, transgene-free method for screening adipogenesis associated cell surface proteins. This provided a valuable tool to investigate MSC-specific markers. Additionally, we showed a possible crosstalk between CD49f and CD146 modulates the adipogenesis of MSCs.
Collapse
Affiliation(s)
- An Nguyen-Thuy Tran
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ha Yeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
| | - Se-Young Oh
- Department of Convergence Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul 07985, Republic of Korea;
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Pei Y, Song Y, Wang B, Lin C, Yang Y, Li H, Feng Z. Integrated lipidomics and RNA sequencing analysis reveal novel changes during 3T3-L1 cell adipogenesis. PeerJ 2022; 10:e13417. [PMID: 35529487 PMCID: PMC9074861 DOI: 10.7717/peerj.13417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
After adipogenic differentiation, key regulators of adipogenesis are stimulated and cells begin to accumulate lipids. To identify specific changes in lipid composition and gene expression patterns during 3T3-L1 cell adipogenesis, we carried out lipidomics and RNA sequencing analysis of undifferentiated and differentiated 3T3-L1 cells. The analysis revealed significant changes in lipid content and gene expression patterns during adipogenesis. Slc2a4 was up-regulated, which may enhance glucose transport; Gpat3, Agpat2, Lipin1 and Dgat were also up-regulated, potentially to enrich intracellular triacylglycerol (TG). Increased expression levels of Pnpla2, Lipe, Acsl1 and Lpl likely increase intracellular free fatty acids, which can then be used for subsequent synthesis of other lipids, such as sphingomyelin (SM) and ceramide (Cer). Enriched intracellular diacylglycerol (DG) can also provide more raw materials for the synthesis of phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylethanolamine (PE), ether-PE, and ether-PC, whereas high expression of Pla3 may enhance the formation of lysophophatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Therefore, in the process of adipogenesis of 3T3-L1 cells, a series of genes are activated, resulting in large changes in the contents of various lipid metabolites in the cells, especially TG, DG, SM, Cer, PI, PC, PE, etherPE, etherPC, LPC and LPE. These findings provide a theoretical basis for our understanding the pathophysiology of obesity.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuxin Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Bingyuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
3
|
Martini C, Sosa FN, Malvicini R, Pacienza N, Yannarelli G, Del C Vila M. Alendronate inhibits triglyceride accumulation and oxidative stress in adipocytes and the inflammatory response of macrophages which are associated with adipose tissue dysfunction. J Physiol Biochem 2021; 77:601-611. [PMID: 34302624 DOI: 10.1007/s13105-021-00826-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023]
Abstract
Alendronate, a bisphosphonate used to prevent osteoporosis, stimulates osteogenesis but impairs adipogenesis. Different clinical trials suggest that the incidence of diabetes may be lower in patients treated with alendronate. Taking into account the importance of adipocytes and macrophages of adipose tissue in insulin resistance and type 2 diabetes, it is necessary to evaluate the effect of alendronate in both cell types. In this paper, we investigated the effect of alendronate on the differentiation to adipocytes of 3T3-L1 fibroblasts, the cell line most used to study adipogenesis, and also its effect on lipid content and oxidative stress in mature adipocytes as well as on the inflammatory response of macrophages. We found that alendronate inhibits differentiation of 3T3-L1 fibroblasts to adipocytes in keeping with reports in other cell lines. On the other hand, treatment of 3T3-L1 adipocytes with alendronate was able to decrease triglyceride content and to prevent H2O2-induced lipid peroxidation which was evaluated as an indicator of oxidative stress. In addition, it was found that activation of RAW 264.7 macrophages to a pro-inflammatory M1 type is inhibited by this bisphosphonate. These results suggest that alendronate may contribute to prevent adipocyte excessive enlargement and the induction of oxidative stress in 3T3-L1 adipocytes as well as the activation of macrophages to a pro-inflammatory M1 type, which are events associated with adipose tissue dysfunction and insulin resistance. In this study, we unraveled the underlying mechanisms of events that were previously observed in clinical trials.
Collapse
Affiliation(s)
- Claudia Martini
- Departamento de Química Biológica, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Fernando Nicolas Sosa
- Departamento de Química Biológica, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Ricardo Malvicini
- Laboratorio de Regulación Génica Y Células Madre, Instituto de Medicina Traslacional, Trasplante Y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, 1078, Buenos Aires, Argentina
| | - Natalia Pacienza
- Laboratorio de Regulación Génica Y Células Madre, Instituto de Medicina Traslacional, Trasplante Y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, 1078, Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica Y Células Madre, Instituto de Medicina Traslacional, Trasplante Y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, 1078, Buenos Aires, Argentina
| | - María Del C Vila
- Departamento de Química Biológica, Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET-Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Zhou S, Fu Y, Zhang XB, Pei M. Liver Kinase B1 Fine-Tunes Lineage Commitment of Human Fetal Synovium-Derived Stem Cells. J Orthop Res 2020; 38:258-268. [PMID: 31429977 PMCID: PMC7294510 DOI: 10.1002/jor.24449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/25/2019] [Indexed: 02/04/2023]
Abstract
Liver kinase B1 (LKB1), a serine/threonine protein, is a key regulator in stem cell function and energy metabolism. Herein, we describe the role of LKB1 in modulating the differentiation of synovium-derived stem cells (SDSCs) toward chondrogenic, adipogenic, and osteogenic lineages. Human fetal SDSCs were transduced with CRISPR associated protein 9 (Cas9)-single-guide RNA vectors to knockout or lentiviral vectors to overexpress the LKB1 gene. Analyses including ICE (Inference of CRISPR Edits) data from Sanger sequencing and quantitative polymerase chain reaction (qPCR) as well as Western blot demonstrated successful knockout (KO) or overexpression (OE) of LKB1 in human fetal SDSCs without any detectable side effects in morphology, proliferation rate, and cell cycle. LKB1 KO increased CD146 expression; interestingly, LKB1 OE increased SSEA4 level. The qPCR data showed that LKB1 KO upregulated the levels of SOX2 and NANOG while LKB1 OE lowered the expression of POU5F1 and KLF4. Furthermore, LKB1 KO enhanced, and LKB1 OE inhibited, chondrogenic and adipogenic differentiation potential. However, perhaps due to the inherent inability to achieve osteogenesis, LKB1 did not obviously affect osteogenic differentiation. These data demonstrate that LKB1 plays a significant role in determining human SDSCs' adipogenic and chondrogenic differentiation, which might provide an approach for fine-tuning the direction of stem cell differentiation in tissue engineering and regeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:258-268, 2020.
Collapse
Affiliation(s)
- Sheng Zhou
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA,Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yawen Fu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Tianjin, China,Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Tianjin, China,Department of Medicine, Loma Linda University, Loma Linda, CA, USA,Co-corresponding author: Xiao-Bing Zhang, PhD. Division of Regenerative Medicine MC1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA 92350, USA. Phone: 909-651-5886. Fax: 909-558-0428.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA,WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA,Corresponding author: Ming Pei MD, PhD, Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196, USA, Telephone: 304-293-1072; Fax: 304-293-7070;
| |
Collapse
|
5
|
The Antiobesity Effects of Buginawa in 3T3-L1 Preadipocytes and in a Mouse Model of High-Fat Diet-Induced Obesity. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3101987. [PMID: 31467880 PMCID: PMC6699312 DOI: 10.1155/2019/3101987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
There has been a remarkable interest in finding lipid inhibitors from natural products to replace synthetic compounds, and a variety of oriental medicinal herbs are reported to have biological activity with regard to lipid inhibition. Buginawa (Bugi) is a novel combined formula that contains twelve medicinal herbs with potential for weight loss induction. We hypothesized that Bugi may have antiobesity effects in 3T3-L1 preadipocytes and in a high-fat diet- (HFD-) induced mouse model. In this study, 3T3-L1 cells were treated with varied concentrations of Bugi (62.5, 125, or 250 μg/mL). Bugi treatment inhibited adipocyte differentiation by suppressing adipogenic transcription genes, including peroxisome proliferator-activated receptor γ protein (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1 (SREBP1), and CCAAT/enhancer-binding protein β (C/EBPβ). Mice were fed a normal diet or an HFD for 11 weeks, and Bugi was simultaneously administered at 50 or 100 mg/kg. Bugi administration significantly reduced body weight gain and white adipose tissue (WAT) weight and effectively inhibited lipid droplet accumulation in epididymal white adipose tissue (eWAT) and liver tissue. Further, Bugi treatment suppressed mRNA levels of PPARγ, C/EBPα, and SREBP1 in eWAT and liver tissue. Our findings demonstrate that Bugi could be an effective candidate for preventing obesity and related metabolic disorders.
Collapse
|
6
|
Al Hasan M, Roy P, Dolan S, Martin PE, Patterson S, Bartholomew C. Adhesion G-protein coupled receptor 56 is required for 3T3-L1 adipogenesis. J Cell Physiol 2019; 235:1601-1614. [PMID: 31304602 DOI: 10.1002/jcp.29079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Obesity-associated conditions represent major global health and financial burdens and understanding processes regulating adipogenesis could lead to novel intervention strategies. This study shows that adhesion G-protein coupled receptor 56 (GPR56) gene transcripts are reduced in abdominal visceral white adipose tissue derived from obese Zucker rats versus lean controls. Immunostaining in 3T3-L1 preadipocytes reveals both mitotic cell restricted surface and low level general expression patterns of Gpr56. Gpr56 transcripts are differentially expressed in 3T3-L1 cells during adipogenesis. Transient knockdown (KD) of Gpr56 in 3T3-L1 cells dramatically inhibits differentiation through reducing the accumulation of both neutral cellular lipids (56%) and production of established adipogenesis Pparγ 2 (60-80%), C/ebpα (40-78%) mediator, and Ap2 (56-80%) marker proteins. Furthermore, genome editing of Gpr56 in 3T3-L1 cells created CW2.2.4 and RM4.2.5.5 clones (Gpr56 -/- cells) with compound heterozygous deletion frameshift mutations which abolish adipogenesis. Genome edited cells have sustained levels of the adipogenesis inhibitor β-catenin, reduced proliferation, reduced adhesion, altered profiles, and or abundance of extracellular matrix component gene transcripts for fibronectin, types I, III, and IV collagens and loss of actin stress fibers. β-catenin KD alone is insufficient to restore adipogenesis in Gpr56 -/- cells. Together these data show that Gpr56 is required for adipogenesis in 3T3-L1 cells. This report is the first demonstration that Gpr56 participates in regulation of the adipogenesis developmental program. Modulation of the levels of this protein and/or its biological activity may represent a novel target for development of therapeutic agents for the treatment of obesity.
Collapse
Affiliation(s)
- Mohammad Al Hasan
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Poornima Roy
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Sharron Dolan
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Patricia E Martin
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Steven Patterson
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Chris Bartholomew
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| |
Collapse
|