1
|
Turkekul K, Erdogan S. Potent Suppression of Prostate Cancer Cell Growth and Eradication of Cancer Stem Cells by CD44-targeted Nanoliposome-quercetin Nanoparticles. J Cancer Prev 2023; 28:160-174. [PMID: 38205358 PMCID: PMC10774486 DOI: 10.15430/jcp.2023.28.4.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
The bioavailability of quercetin, a natural compound, is hindered by low solubility, limited absorption, and restricted systemic availability. Therefore, encapsulating it in biocompatible nanoparticles presents a promising solution. This study aimed to target prostate cancer stem cells (CSCs) overexpressing CD44+ receptors as well as cancer cells, employing quercetin-loaded hyaluronic acid-modified nanoliposomes (LP-Quer-HA). Synthesized via a green ethanol injection method, these nanoliposomes had an average diameter of 134 nm and an impressive loading efficiency of 96.9%. Human prostate cancer cells were treated with either 10 μM of free quercetin or the same concentration delivered by LP-Quer-HA for 72 hours. Free quercetin reduced androgen-resistant PC3 cell viability by 16%, while LP-Quer-HA significantly increased cell death to 60%. It induced apoptosis, upregulating cytochrome c, Bax, caspases 3 and 8, and downregulating survivin and Bcl-2 expression. Compared to free quercetin, LP-Quer-HA upregulated E-cadherin expression while inhibiting cell migration and reducing the expression of fibronectin, N-cadherin, and MMP9. Treatment of PC3 cell tumor spheroids with LP-Quer-HA decreased the number of CD44 cells and expression of CD44, Oct3/4 and Wnt. Moreover, LP-Quer-HA inhibited p-ERK expression while increasing p38/MAPK and NF-κB protein expression. In androgen-sensitive LNCaP cells, LP-Quer-HA efficacy was notable, reducing cell viability from 10% to 52% compared to free quercetin. Utilizing HA-modified nanoliposomes as a quercetin delivery system enhanced its potency at lower concentrations, reducing the CD44+ cell population and effectively impeding prostate cancer cell proliferation and migration. These findings underscore the potential of quercetin-loaded cationic nanoliposomes as a robust therapeutic approach.
Collapse
Affiliation(s)
- Kader Turkekul
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| |
Collapse
|
2
|
Martinucci B, Cucielo MS, Minatel BC, Cury SS, Caxali GH, Aal MCE, Felisbino SL, Pinhal D, Carvalho RF, Delella FK. Fibronectin Modulates the Expression of miRNAs in Prostate Cancer Cell Lines. Front Vet Sci 2022; 9:879997. [PMID: 35898539 PMCID: PMC9310065 DOI: 10.3389/fvets.2022.879997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PCa) is a significant cause of cancer-related deaths among men and companion animals, such as dogs. However, despite its high mortality and incidence rates, the molecular mechanisms underlying this disease remain to be fully elucidated. Among the many factors involved in prostate carcinogenesis, the extracellular matrix (ECM) plays a crucial role. This ECM in the prostate is composed mainly of collagen fibers, reticular fibers, elastic fibers, proteoglycans and glycoproteins, such as fibronectin. Fibronectin is a glycoprotein whose dysregulation has been implicated in the development of multiple types of cancer, and it has been associated with cell migration, invasion, and metastasis. Furthermore, our research group has previously shown that fibronectin induces transcriptional changes by modulating the expression of protein coding genes in LNCaP cells. However, potential changes at the post-transcriptional level are still not well understood. This study investigated the impact of exposure to fibronectin on the expression of a key class of regulatory RNAs, the microRNAs (miRNAs), in prostate cancer cell lines LNCaP and PC-3. Five mammalian miRNAs (miR-21, miR-29b, miR-125b, miR-221, and miR-222) were differentially expressed after fibronectin exposure in prostate cell lines. The expression profile of hundreds of mRNAs predicted to be targeted by these miRNAs was analyzed using publicly available RNA-Sequencing data (GSE64025, GSE68645, GSE29155). Also, protein-protein interaction networks and enrichment analysis were performed to gain insights into miRNA biological functions. Altogether, these functional analyzes revealed that fibronectin exposure impacts the expression of miRNAs potentially involved in PCa causing changes in critical signaling pathways such as PI3K-AKT, and response to cell division, death, proliferation, and migration. The relationship here demonstrated between fibronectin exposure and altered miRNA expression improves the comprehension of PCa in both men and other animals, such as dogs, which naturally develop prostate cancer.
Collapse
Affiliation(s)
- Bruno Martinucci
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Maira Smaniotto Cucielo
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Brenda Carvalho Minatel
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gabriel Henrique Caxali
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Mirian Carolini Esgoti Aal
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sergio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Flávia Karina Delella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
- *Correspondence: Flávia Karina Delella
| |
Collapse
|
3
|
Abstract
Lung cancer is the world's most common malignancies and ranks first among all cancer-related deaths. Lung adenocarcinoma (LUAD) is the most frequent histological type in lung cancer. Its pathogenesis has not yet been fully elucidated, so it is of great significance to explore related genes for elucidating the molecular mechanism involved in occurrence and development of LUAD.To explore the crucial genes associated with LUAD development and progression, microarray datasets GSE7670, GSE10072, and GSE31547 were acquired from the Gene Expression Omnibus (GEO) database. R language Limma package was adopted to screen the differentially expressed genes (DEGs). The clusterProfiler package was used for enrichment analysis and annotation of the Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathways for DEGs. The Search Tool for the Retrieval of Interacting Genes database (STRING) was used to construct the protein interaction network for DEGs, while Cytoscape was adopted to visualize it. The functional module was screened with Cytoscape's MCODE (The Molecular Complex Detection) plugin. The crucial genes associated with LUAD were identified by cytoHubba plugin. Kaplan-Meier plotter online tool was used to perform survival analysis of the hub gene.Three hundred twenty-one DEGs in total were screened, of which 105 were upregulated and 216 were downregulated. It was found that some GO terms and pathways (e.g., collagen trimer, extracellular structure organization, heparin binding, complement and coagulation cascades, malaria, protein digestion and absorption, and PPAR signaling pathway) were considerably enriched in DEGs. UBE2C, TOP2A, RRM2, CDC20, CCNB2, KIAA0101, BUB1B, TPX2, PRC1, and CDK1 were identified as crucial genes. Survival analysis showed that the overexpression of UBE2C, TOP2A, RRM2, CDC20, CCNB2, KIAA0101, BUB1B, TPX2, and PRC1 significantly reduced the overall survival of LUAD patients. One of the crucial genes: UBE2C was validated by immunohistochemistry to be upregulated in LUAD tissues.This study screened out potential biomarkers of LUAD, providing a theoretical basis for elucidating the pathogenesis and evaluating the prognosis of LUAD.
Collapse
|