1
|
Lin J, Huang J, Tan C, Wu S, Lu X, Pu J. LncRNA MEG3 suppresses hepatocellular carcinoma by stimulating macrophage M1 polarization and modulating immune system via inhibiting CSF-1 in vivo/vitro studies. Int J Biol Macromol 2024; 281:136459. [PMID: 39396590 DOI: 10.1016/j.ijbiomac.2024.136459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is characterized by a complex tumor microenvironment (TME), and long non-coding RNAs (lncRNAs) MEG3 emerged as regulators of macrophage polarization with a negative relationship with colony-stimulating factor 1 (CSF-1). Few studies are on the interplay among MEG3, CSF-1, T helper cells (Th), and the programmed cell death protein 1 and its ligands (PD-1/PD-Ls) in TME of HCC.MEG3 expression in THP-1 macrophages, monitored polarization, and PD-1/PD-Ls expression were through flow cytometry, WB, and RT-qPCR. In co-cultures, the interaction of MEG3, macrophage, and HCC was assayed by ELISA. The invasive and migratory of HCC were assessed through experiments such as CCK-8, clonogenic assay, wound healing, and Transwell. A xenograft mouse model of HCC was established, administered with MEG3 overexpression (OE) or knockdown (KD) constructs, and monitored tumor growth. In vitro, MEG3 OE induced a robust M1 macrophage phenotype, evidenced by elevated expression of M1 markers and a significant increase in Th1 cytokines, with a concomitant decrease in Th2 cytokines. This was paralleled by reduced CSF-1 and PD-1/PD-Ls expression. In contrast, MEG3 KD promoted an M2 phenotype with increased CSF-1 and PD-1/PD-Ls expression, and an upregulation of Th2 cytokines. MEG3 OE inhibited the growth, invasion, and migration of HCC, while the opposite was observed when MEG3 was downregulated. In vivo, MEG3 OE resulted in significantly reduced tumor growth, with decreased PD-1/PD-Ls expression on macrophages and enhanced Th1 response. Conversely, MEG3 KD promoted tumor growth with increased PD-1/PD-Ls and a Th2-skewed immune response. MEG3 modulates the TME by affecting TAMs through CSF-1, thereby influencing the balance of Th1/Th2 cells and altering the expression of PD-1/PD-L1s. This study demonstrates that targeting MEG3 is an effective therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jiajie Lin
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000,China
| | - Junling Huang
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan 2nd Road, Baise, 533000, Guangxi Province, China
| | - Chuan Tan
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Siyang Wu
- Respiratory Intensive Care Unit, Affiliated Hospital of YoujiangMedical University for Nationalities, Baise, Guangxi 533000, China
| | - Xianzhe Lu
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000,China.
| | - Jian Pu
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
2
|
Vaxevanis C, Bachmann M, Seliger B. Immune modulatory microRNAs in tumors, their clinical relevance in diagnosis and therapy. J Immunother Cancer 2024; 12:e009774. [PMID: 39209767 PMCID: PMC11367391 DOI: 10.1136/jitc-2024-009774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The importance of the immune system in regulating tumor growth by inducing immune cell-mediated cytotoxicity associated with patients' outcomes has been highlighted in the past years by an increasing life expectancy in patients with cancer on treatment with different immunotherapeutics. However, tumors often escape immune surveillance, which is accomplished by different mechanisms. Recent studies demonstrated an essential role of small non-coding RNAs, such as microRNAs (miRNAs), in the post-transcriptional control of immune modulatory molecules. Multiple methods have been used to identify miRNAs targeting genes involved in escaping immune recognition including miRNAs targeting CTLA-4, PD-L1, HLA-G, components of the major histocompatibility class I antigen processing machinery (APM) as well as other immune response-relevant genes in tumors. Due to their function, these immune modulatory miRNAs can be used as (1) diagnostic and prognostic biomarkers allowing to discriminate between tumor stages and to predict the patients' outcome as well as response and resistance to (immuno) therapies and as (2) therapeutic targets for the treatment of tumor patients. This review summarizes the role of miRNAs in tumor-mediated immune escape, discuss their potential as diagnostic, prognostic and predictive tools as well as their use as therapeutics including alternative application methods, such as chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Christoforos Vaxevanis
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Translational Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| |
Collapse
|
3
|
Ke J, Huang S, He Z, Lei S, Lin S, Duan M. TIGIT Regulates T Cell Inflammation in Airway Inflammatory Diseases. Inflammation 2024:10.1007/s10753-024-02045-y. [PMID: 38780694 DOI: 10.1007/s10753-024-02045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
TIGIT, a co-inhibitory receptor found on T cells and NK cells, transmits inhibitory signals upon binding to its ligand. This interaction suppresses the activation of various signaling pathways, leading to functional exhaustion of cells, ultimately dampening excessive inflammatory responses or facilitating immune evasion in tumors. Dysregulated TIGIT expression has been noted in T cells across different inflammatory conditions, exhibiting varying effects based on T cell subsets. TIGIT predominantly restrains the effector function of pro-inflammatory T cells, upholds the suppressive function of regulatory T cells, and influences Tfh maturation. Mechanistically, the IL27-induced transcription factors c-Maf and Blimp-1 are believed to be key regulators of TIGIT expression in T cells. Notably, TIGIT expression in T cells is implicated in lung diseases, particularly airway inflammatory conditions such as lung cancer, obstructive pulmonary disease, interstitial lung disease, sarcoidosis, and COVID-19. This review emphasizes the significance of TIGIT in the context of T cell immunity and airway inflammatory diseases.
Collapse
Affiliation(s)
- Junyi Ke
- Guangxi Medical University, Nanning, China
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shu Huang
- Wuming Hospital of Guangxi Medical University, Nanning, China
| | | | - Siyu Lei
- Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Shiya Lin
- Guangxi Medical University, Nanning, China
| | - Minchao Duan
- Wuming Hospital of Guangxi Medical University, Nanning, China.
- Department of Respiratory Medicine, Wuming Hospital of Guangxi Medical University, No.26 Yongning Road, Wuming District, Nanning, 530100, China.
| |
Collapse
|
4
|
Han X, Yu S, Cui Y, Li J, Fan J, Wang L, Wang M, Pan Y, Xu G. MiR-23a promotes autophagy of yak cumulus cells to alleviate apoptosis via the apoptosis signal-regulating kinase 1/c-Jun N-terminal kinase pathway. Theriogenology 2023; 212:50-63. [PMID: 37690377 DOI: 10.1016/j.theriogenology.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
The ultimate fate of Graafian follicles is ovulation or atresia which relies on the highly coordinated processes of apoptosis and autophagy in ovarian cells. Long non-coding RNA maternally expressed gene 3 (LncRNA MEG3), miR-23a, and apoptosis signal-regulating kinase 1 (ASK1) are factors associated with autophagy. However, whether these factors can regulate autophagy in cumulus cells (CCs) of yak is unclear. Here, miR-23a overexpression upregulated the LC3-II/LC3-I ratio and Beclin1 abundance while reducing p62 accumulation (p < 0.05). The monodansylcadaverine assay exhibited a marked increase in punctate green fluorescence, and the GFP-LC3B displayed increased yellow fluorescence (p < 0.05). The opposite effect was observed for miR-23a inhibitors. Furthermore, miR-23a overexpression downregulated the abundance of ASK1 mRNA and total ASK1 protein (t-ASK1), whereas miR-23a inhibitors up-regulated them (p < 0.05). The effects of miR-23a overexpression on ASK1 phosphorylated protein at serine 845 (P-845), total JNK (c-Jun N-terminal kinase) (t-JNK) and the JNK phosphorylated protein (p-JNK) were similar to those of t-ASK1 but elicited the opposite effect on ASK1 phosphorylated protein at serine 967 (P-967) (p < 0.05). We further demonstrated that ASK1 expression can be silenced by small-interfering RNA (siRNA), which had no significant effect on t-JNK abundance (p > 0.05) but significantly suppressed the p-JNK expression (p < 0.05). Silencing ASK1 significantly improved Beclin1 abundance and the LC3-II/LC3-I ratio, but decreased p62 abundance (p < 0.05). An increase in yellow GFP-LC3B puncta and green MDC staining puncta were observed (p < 0.05). Overexpression of LncRNA MEG3 significantly increased the expression of t-ASK1, P-845, and JNK and decreased the abundance of P-967 and miR-23a (p < 0.05). In addition, miR-23a upregulation reduced the number of the TUNEL-positive cells, and the addition of 8 mM 3-methyladenine (3-MA) reversed this downregulation (p < 0.05). Similar trends were observed for the Bax/Bcl2 ratio and cleaved-caspase3 abundance. In summary, miR-23a promotes autophagy by inhibiting ASK1 abundance, which reduces apoptosis of yak CCs. This effect can be inhibited by LncRNA MEG3, which has implications for decreasing abnormal Graafian follicular atresia and maintaining development.
Collapse
Affiliation(s)
- Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jingjing Li
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Libin Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Meng Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Gengquan Xu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
5
|
Small A, Lowe K, Wechalekar MD. Immune checkpoints in rheumatoid arthritis: progress and promise. Front Immunol 2023; 14:1285554. [PMID: 38077329 PMCID: PMC10704353 DOI: 10.3389/fimmu.2023.1285554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune inflammatory conditions, and while the mechanisms driving pathogenesis are yet to be completely elucidated, self-reactive T cells and immune checkpoint pathways have a clear role. In this review, we provide an overview of the importance of checkpoint pathways in the T cell response and describe the involvement of these in RA development and progression. We discuss the relationship between immune checkpoint therapy in cancer and autoimmune adverse events, draw parallels with the involvement of immune checkpoints in RA pathobiology, summarise emerging research into some of the lesser-known pathways, and the potential of targeting checkpoint-related pathways in future treatment approaches to RA management.
Collapse
Affiliation(s)
- Annabelle Small
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Katie Lowe
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Mihir D Wechalekar
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
6
|
Dabbaghi R, Safaralizadeh R, Rahmani S, Barpour N, Hosseinpourfeizi M, Rajabi A, Baradaran B. The effect of glatiramer acetate, IFNβ-1a, fingolimod, and dimethyl fumarate on the expression of T-bet, IFN-γ, and MEG3 in PBMC of RRMS patients. BMC Res Notes 2023; 16:273. [PMID: 37845751 PMCID: PMC10577903 DOI: 10.1186/s13104-023-06556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is a progressing neurodegenerative disease marked by chronic central nervous system inflammation and degeneration.This study investigates gene expression profiles of T-box transcription factor TBX21 (T-bet), interferon-gamma (IFN-γ), and long non-coding RNA MEG3 in peripheral blood mononuclear cells (PBMCs) from treatment-naïve Relapsing-Remitting Multiple Sclerosis patients (RRMS), healthy controls, and RRMS patients on different Disease Modifying Therapies (DMTs). The aim is to understand the role of T-bet, IFN-γ, and MEG3 in MS pathogenesis and their potential as diagnostic and therapeutic targets. RESULTS Elevated T-bet expression is observed in treatment-naïve RRMS patients compared to healthy individuals. RRMS patients treated with Interferon beta-1alpha (IFNβ-1a) and fingolimod exhibit downregulated T-bet and MEG3 expression levels, respectively, with more pronounced effects in females. Healthy individuals show a moderate positive correlation between T-bet and MEG3 and between IFN-γ and T-bet. In RRMS patients treated with Glatiramer Acetate (GA), a strong positive correlation is observed between MEG3 and IFN-γ. Remarkably, RRMS patients treated with Dimethyl Fumarate (DMF) exhibit a significant positive correlation between T-bet and MEG3. These findings underscore the diagnostic potential of T-bet in RRMS, warranting further exploration of MEG3, T-bet, and IFN-γ interplay in RRMS patients.
Collapse
Affiliation(s)
- Rozhin Dabbaghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Shima Rahmani
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nesa Barpour
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Ali Rajabi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Han X, Pan Y, Fan J, Wang M, Wang L, Wang J, Afedo SY, Zhao L, Wang Y, Zhao T, Zhang T, Zhang R, Cui Y, Yu S. LncRNA MEG3 regulates ASK1/JNK axis-mediated apoptosis and autophagy via sponging miR-23a in granulosa cells of yak tertiary follicles. Cell Signal 2023; 107:110680. [PMID: 37086956 DOI: 10.1016/j.cellsig.2023.110680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Apoptosis and autophagy in granulosa cells (GCs) are highly related to follicular development and atresia. It has also been reported that they are related to LncRNA MEG3, miR-23a and apoptosis signal-regulating kinase 1 (ASK-1). However, their relationship to follicular development and the extent to which follicle stimulating hormone (FSH) or luteinizing hormone (LH) can regulate this process remain unknown. Here, we found that ASK1 and JNK were expressed in the GCs of gonadotropin-dependent follicles, and those levels were significantly higher (p < 0.05) in yak Tertiary follicles compared to that of Secondary follicles and Graafian follicles. Then, the effect of LncRNA MEG3 / miR-23a on apoptosis and autophagy via ASK1/JNK (c-Jun N-terminal kinase) in yak GCs was studied. Overexpressing LncRNA MEG3 reduced miR-23a levels and p-967 protein expression, but enhanced ASK1 and JNK mRNA levels as well as t-ASK1, p-845, t-JNK, and p-JNK proteins levels. And Up-regulation of LncRNA MEG3 promoted apoptosis while attenuating autophagy. The targeting relationship between miR-23a and the binding sites of LncRNA MEG3 and ASK1 was also confirmed with the dual luciferase reporter assay. And, the relationship between LncRNA MEG3 and miR-23a was observed as a negative feedback regulation, and changes in LncRNA MEG3 and miR-23a levels can alter the expression of ASK1/JNK axis in yaks GCs. In addition, FSH (10 μg/mL) or LH (100 μg/mL) ability to reverse the effects of LncRNA MEG3 on miR-23a levels and ASK1/JNK axis-mediated apoptosis and autophagy was verified in yak GCs. This is significantly beneficial for decreasing abnormal follicular atresia for yaks tertiary follicles.
Collapse
Affiliation(s)
- Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Meng Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Libin Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinglei Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Seth Yaw Afedo
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaying Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Rui Zhang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
8
|
Zhou H, Jia W, Lu L, Han R. MicroRNAs with Multiple Targets of Immune Checkpoints, as a Potential Sensitizer for Immune Checkpoint Inhibitors in Breast Cancer Treatment. Cancers (Basel) 2023; 15:824. [PMID: 36765782 PMCID: PMC9913694 DOI: 10.3390/cancers15030824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the most common cancer type and the leading cause of cancer-associated mortality in women worldwide. In recent years, immune checkpoint inhibitors (ICIs) have made significant progress in the treatment of breast cancer, yet there are still a considerable number of patients who are unable to gain lasting and ideal clinical benefits by immunotherapy alone, which leads to the development of a combination regimen as a novel research hotspot. Furthermore, one miRNA can target several checkpoint molecules, mimicking the therapeutic effect of a combined immune checkpoint blockade (ICB), which means that the miRNA therapy has been considered to increase the efficiency of ICIs. In this review, we summarized potential miRNA therapeutics candidates which can affect multiple targets of immune checkpoints in breast cancer with more therapeutic potential, and the obstacles to applying miRNA therapeutically through the analyses of the resources available from a drug target perspective. We also included the content of "too many targets for miRNA effect" (TMTME), combined with applying TargetScan database, to discuss adverse events. This review aims to ignite enthusiasm to explore the application of miRNAs with multiple targets of immune checkpoint molecules, in combination with ICIs for treating breast cancer.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200437, China
| | - Wentao Jia
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
- School of Medicine, Center for Biomedical Data Science, New Haven, CT 06520-8034, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520-8034, USA
| | - Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
| |
Collapse
|
9
|
Paszkowska A, Kolenda T, Guglas K, Kozłowska-Masłoń J, Podralska M, Teresiak A, Bliźniak R, Dzikiewicz-Krawczyk A, Lamperska K. C10orf55, CASC2, and SFTA1P lncRNAs Are Potential Biomarkers to Assess Radiation Therapy Response in Head and Neck Cancers. J Pers Med 2022; 12:jpm12101696. [PMID: 36294833 PMCID: PMC9605465 DOI: 10.3390/jpm12101696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022] Open
Abstract
Long non-coding RNAs have proven to be important molecules in carcinogenesis. Due to little knowledge about them, the molecular mechanisms of tumorigenesis are still being explored. The aim of this work was to study the effect of ionizing radiation on the expression of lncRNAs in head and neck squamous cell carcinoma (HNSCC) in patients responding and non-responding to radiotherapy. The experimental model was created using a group of patients with response (RG, n = 75) and no response (NRG, n = 75) to radiotherapy based on the cancer genome atlas (TCGA) data. Using the in silico model, statistically significant lncRNAs were defined and further validated on six HNSCC cell lines irradiated at three different doses. Based on the TCGA model, C10orf55, C3orf35, C5orf38, CASC2, MEG3, MYCNOS, SFTA1P, SNHG3, and TMEM105, with the altered expression between the RG and NRG were observed. Analysis of pathways and immune profile indicated that these lncRNAs were associated with changes in processes, such as epithelial-to-mesenchymal transition, regulation of spindle division, and the p53 pathway, and differences in immune cells score and lymphocyte infiltration signature score. However, only C10orf55, CASC2, and SFTA1P presented statistically altered expression after irradiation in the in vitro model. In conclusion, the expression of lncRNAs is affected by ionization radiation in HNSCC, and these lncRNAs are associated with pathways, which are important for radiation response and immune response. Potentially presented lncRNAs could be used as biomarkers for personalized radiotherapy in the future. However, these results need to be verified based on an in vitro experimental model to show a direct net of interactions.
Collapse
Affiliation(s)
- Anna Paszkowska
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Correspondence: (T.K.); (K.L.)
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki and Wigury Street 61, 02-091 Warsaw, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
| | | | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Correspondence: (T.K.); (K.L.)
| |
Collapse
|
10
|
Liu C, Zhang Y, Ma Z, Yi H. Long Noncoding RNAs as Orchestrators of CD4+ T-Cell Fate. Front Cell Dev Biol 2022; 10:831215. [PMID: 35794862 PMCID: PMC9251064 DOI: 10.3389/fcell.2022.831215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cells differentiate towards different subpopulations through the regulation of lineage-specific cytokines and transcription factors, which flexibly respond to various immune challenges. However, considerable work has demonstrated that the CD4+ T-cell differentiation mechanism is complex and not limited to transcription factors and cytokines. Long noncoding RNAs (lncRNAs) are RNA molecules with lengths exceeding 200 base pairs that regulate various biological processes and genes. LncRNAs have been found to conciliate the plasticity of CD4+ T-cell differentiation. Then, we focused on lncRNAs involved in CD4+ T-cell differentiation and enlisted some molecular thought into the plasticity and functional heterogeneity of CD4+ T cells. Furthermore, elucidating how lncRNAs modulate CD4+ T-cell differentiation in disparate immune diseases may provide a basis for the pathological mechanism of immune-mediated diseases.
Collapse
Affiliation(s)
- Chang Liu
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
- *Correspondence: Huanfa Yi,
| |
Collapse
|
11
|
Functional Implications of Intergenic GWAS SNPs in Immune-Related LncRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:147-160. [DOI: 10.1007/978-3-030-92034-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Votavova H, Belickova M. Hypoplastic myelodysplastic syndrome and acquired aplastic anemia: Immune‑mediated bone marrow failure syndromes (Review). Int J Oncol 2021; 60:7. [PMID: 34958107 PMCID: PMC8727136 DOI: 10.3892/ijo.2021.5297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022] Open
Abstract
Hypoplastic myelodysplastic syndrome (hMDS) and aplastic anemia (AA) are rare hematopoietic disorders characterized by pancytopenia with hypoplastic bone marrow (BM). hMDS and idiopathic AA share overlapping clinicopathological features, making a diagnosis very difficult. The differential diagnosis is mainly based on the presence of dysgranulopoiesis, dysmegakaryocytopoiesis, an increased percentage of blasts, and abnormal karyotype, all favouring the diagnosis of hMDS. An accurate diagnosis has important clinical implications, as the prognosis and treatment can be quite different for these diseases. Patients with hMDS have a greater risk of neoplastic progression, a shorter survival time and a lower response to immunosuppressive therapy compared with patients with AA. There is compelling evidence that these distinct clinical entities share a common pathophysiology based on the damage of hematopoietic stem and progenitor cells (HSPCs) by cytotoxic T cells. Expanded T cells overproduce proinflammatory cytokines (interferon-γ and tumor necrosis factor-α), resulting in decreased proliferation and increased apoptosis of HSPCs. The antigens that trigger this abnormal immune response are not known, but potential candidates have been suggested, including Wilms tumor protein 1 and human leukocyte antigen class I molecules. Our understanding of the molecular pathogenesis of these BM failure syndromes has been improved by next-generation sequencing, which has enabled the identification of a large spectrum of mutations. It has also brought new challenges, such as the interpretation of variants of uncertain significance and clonal hematopoiesis of indeterminate potential. The present review discusses the main clinicopathological differences between hMDS and acquired AA, focuses on the molecular background and highlights the importance of molecular testing.
Collapse
Affiliation(s)
- Hana Votavova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague 128 00, Czech Republic
| | - Monika Belickova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague 128 00, Czech Republic
| |
Collapse
|
13
|
Wang E, Zhang Y, Ding R, Wang X, Zhang S, Li X. miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia. Mol Med Rep 2021; 25:27. [PMID: 34821370 PMCID: PMC8630822 DOI: 10.3892/mmr.2021.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Aplastic anemia (AA) is a bone marrow failure syndrome with high morbidity and mortality. Bone marrow (BM)-mesenchymal stem cells (MSCs) are the main components of the BM microenvironment, and dysregulation of BM-MSC adipogenic differentiation is a pathologic hallmark of AA. MicroRNAs (miRNAs/miRs) are crucial regulators of multiple pathological processes such as AA. However, the role of miR-30a-5p in the modulation of BM-MSC adipogenic differentiation in AA remains unclear. The present study aimed to explore the effect of miR-30a-5p on AA BM-MSC adipogenic differentiation and the underlying mechanism. The levels of miR-30a-5p expression and family with sequence similarity 13, member A (FAM13A) mRNA expression in BM-MSCs were quantified using reverse transcription-quantitative (RT-q) PCR. The mRNA expression levels of adipogenesis-associated factors [fatty acid-binding protein 4 (FABP4), lipoprotein lipase (LPL), perilipin-1 (PLIN1), peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)] were analyzed using RT-qPCR. Lipid droplet accumulation was evaluated using Oil Red O staining in BM-MSCs. The interaction between miR-30a-5p and the FAM13A 3′-untranslated region was identified by TargetScan, and a dual-luciferase reporter assay was used to confirm the interaction. The expression levels of FAM13A and Wnt/β-catenin pathway-related proteins were examined via western blotting. The results showed that miR-30a-5p expression levels were significantly elevated in BM-MSCs from patients with AA compared with those in control subjects (iron deficiency anemia). miR-30a-5p expression levels were also significantly increased in adipose-induced BM-MSCs in a time-dependent manner. miR-30a-5p significantly promoted AA BM-MSC adipogenic differentiation, and significantly enhanced the mRNA expression levels of FABP4, LPL, PLIN1, PPARγ and C/EBPα as well as lipid droplet accumulation. miR-30a-5p was also demonstrated to target FAM13A in AA BM-MSCs. FAM13A significantly reduced BM-MSC adipogenic differentiation by activating the Wnt/β-catenin signaling pathway. In conclusion, miR-30a-5p was demonstrated to serve a role in AA BM-MSC adipogenic differentiation by targeting the FAM13A/Wnt/β-catenin signaling pathway. These findings suggest that miR-30a-5p may be a therapeutic target for AA.
Collapse
Affiliation(s)
- Enbo Wang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Yunyan Zhang
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Rongmei Ding
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Xiaohua Wang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Shumin Zhang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Xinghua Li
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| |
Collapse
|
14
|
Taheri M, Barth DA, Kargl J, Rezaei O, Ghafouri-Fard S, Pichler M. Emerging Role of Non-Coding RNAs in Regulation of T-Lymphocyte Function. Front Immunol 2021; 12:756042. [PMID: 34804042 PMCID: PMC8599985 DOI: 10.3389/fimmu.2021.756042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
T-lymphocytes (T cells) play a major role in adaptive immunity and current immune checkpoint inhibitor-based cancer treatments. The regulation of their function is complex, and in addition to cytokines, receptors and transcription factors, several non-coding RNAs (ncRNAs) have been shown to affect differentiation and function of T cells. Among these non-coding RNAs, certain small microRNAs (miRNAs) including miR-15a/16-1, miR-125b-5p, miR-99a-5p, miR-128-3p, let-7 family, miR-210, miR-182-5p, miR-181, miR-155 and miR-10a have been well recognized. Meanwhile, IFNG-AS1, lnc-ITSN1-2, lncRNA-CD160, NEAT1, MEG3, GAS5, NKILA, lnc-EGFR and PVT1 are among long non-coding RNAs (lncRNAs) that efficiently influence the function of T cells. Recent studies have underscored the effects of a number of circular RNAs, namely circ_0001806, hsa_circ_0045272, hsa_circ_0012919, hsa_circ_0005519 and circHIPK3 in the modulation of T-cell apoptosis, differentiation and secretion of cytokines. This review summarizes the latest news and regulatory roles of these ncRNAs on the function of T cells, with widespread implications on the pathophysiology of autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dominik A Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
15
|
Xu X, Zhong Z, Shao Y, Yi Y. Prognostic Value of MEG3 and Its Correlation With Immune Infiltrates in Gliomas. Front Genet 2021; 12:679097. [PMID: 34220951 PMCID: PMC8242350 DOI: 10.3389/fgene.2021.679097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has revealed that dysregulated lncRNA expression contributes to the onset and progression of cancer. However, the mechanistic role of lncRNA in glioma progression and tumor immunology remains largely unknown. This study aimed to evaluate the significance of maternally expressed gene 3 (MEG3) in the prognosis of and its immune-related roles in gliomas. The expression levels of MEG3 were analyzed using Oncomine and TIMER database. As an important imprinted gene, the copy number variation (CNV) of MEG3 in both glioblastoma multiforme (GBM) and low-grade glioma (LGG) were analyzed using GSCALite database, whereas its prognostic significance was assessed using PrognoScan and GEPIA databases. The relationship between MEG3 and tumor-infiltrated immune cells was analyzed using TIMER. Results showed that MEG3 expression was lower in most of the human cancer tissues than in the normal tissues. We also found that heterozygous deletion of MEG3 occurred more frequent than heterozygous amplification in gliomas, and mRNA expression of MEG3 was significantly positively correlated with its CNV in both the GBM and LGG group. Survival analysis showed that the CNV level of MEG3 had significant correlation with overall survival (OS) and progression-free survival (PFS) compared with wild type in LGG. Lower MEG3 expression was related with poor prognosis. Further analysis showed that in GBM, MEG3 expression level was significantly positively correlated with that of infiltrating CD8+ T cells and significantly negatively correlated with that of infiltrating dendritic cells. In LGG, MEG3 expression level was significantly negatively correlated with levels of infiltrating B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Univariate Cox survival analysis demonstrated that only the level of infiltrating dendritic cells significantly affected the survival time of patients with GBM, while all six types of immune cells had a significant effect on the survival time of patients with LGG. Furthermore, MEG3 expression showed strong correlations with multiple immune markers in gliomas, especially in LGG. The current findings suggest that MEG3 expression might serve as a possible prognostic marker and potential immunotherapeutic target for gliomas.
Collapse
Affiliation(s)
- Xiaoping Xu
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, China
| | - Zhenglan Zhong
- Department of Health Examination, The Second People's Hospital of Yibin, Yibin, China
| | - Yongxiang Shao
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, China
| | - Yong Yi
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, China
| |
Collapse
|
16
|
Li H, Xu X, Wang D, Zhang Y, Chen J, Li B, Su S, Wei L, You H, Fang Y, Wang Y, Liu Y. Hypermethylation-mediated downregulation of long non-coding RNA MEG3 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells and promotes pediatric aplastic anemia. Int Immunopharmacol 2021; 93:107292. [PMID: 33529912 DOI: 10.1016/j.intimp.2020.107292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The reduced osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is the typical characteristics of pediatric aplastic anemia (AA) pathogenesis. Long non-coding RNA MEG3 is reported to promote osteogenic differentiation of BMSCs via inducing BMP4 expression. OBJECTIVE This study aims to investigate the mechanism of DNMT1/MEG3/BMP4 pathway in osteogenic differentiation of BMSCs in pediatric AA. METHODS BMSCs were isolated and purified from bone marrows of pediatric AA patients (n = 5) and non-AA patients (n = 5). The expression of DNMT1, MEG3, and BMP4 in isolated BMSCs was detected using quantitative real-time PCR and western blot analysis. Osteogenic differentiation was determined using Alizarin red staining. The methylation of MEG3 promoter and the interaction between DNMT1 and MEG3 promoter were detected using methylation-specific PCR and chromatin immunoprecipitation assay, respectively. RESULTS Lowly expressed MEG3 and BMP4 and highly expressed DNMT1 were observed in BMSCs of pediatric AA patients. The overexpression of MEG3 promoted osteogenic differentiation of BMSCs. Luciferase reporter assay showed that MEG3 overexpression increased transcriptional activity of BMP4. The inhibitor of methylation, 5-azacytidine, suppressed DNMT1 expression and reduced methylation of MEG3 promoter. Overexpression of DNMT1 increased the binding between DNMT1 and MEG3 promoter. The simultaneous overexpression of DNMT1 and MEG3 restored the inhibition of osteogenic differentiation caused by DNMT1 overexpression alone. CONCLUSIONS Our findings indicated that DNMT1 mediated the hypermethylation of MEG3 promoter in BMSCs, and DNMT1/MEG3/BMP4 pathway modulated osteogenic differentiation of BMSCs in pediatric AA.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xueju Xu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dao Wang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuan Zhang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiao Chen
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bai Li
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shufang Su
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Linlin Wei
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongliang You
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingqi Fang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingchao Wang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yufeng Liu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
17
|
Baulina N, Kiselev I, Favorova O. Imprinted Genes and Multiple Sclerosis: What Do We Know? Int J Mol Sci 2021; 22:1346. [PMID: 33572862 PMCID: PMC7866243 DOI: 10.3390/ijms22031346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disease of the central nervous system that arises from interplay between non-genetic and genetic risk factors. The epigenetics functions as a link between these factors, affecting gene expression in response to external influence, and therefore should be extensively studied to improve the knowledge of MS molecular mechanisms. Among others, the epigenetic mechanisms underlie the establishment of parent-of-origin effects that appear as phenotypic differences depending on whether the allele was inherited from the mother or father. The most well described manifestation of parent-of-origin effects is genomic imprinting that causes monoallelic gene expression. It becomes more obvious that disturbances in imprinted genes at the least affecting their expression do occur in MS and may be involved in its pathogenesis. In this review we will focus on the potential role of imprinted genes in MS pathogenesis.
Collapse
Affiliation(s)
- Natalia Baulina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ivan Kiselev
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
| | - Olga Favorova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
18
|
Shen C, Yang C, Xia B, You M. Long non-coding RNAs: Emerging regulators for chemo/immunotherapy resistance in cancer stem cells. Cancer Lett 2020; 500:244-252. [PMID: 33242560 DOI: 10.1016/j.canlet.2020.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of tumor cells critical for tumor development. Their unique abilities, such as self-renewal, have resulted in tumor resistance to various cancer treatments, including traditional chemotherapy and latest immunotherapy. CSCs-targeting therapy is a promising treatment to overcome the therapeutic resistances to different tumors. However, despite their significance, the regulatory mechanism generating therapy-resistant CSCs is still obscure. Long non-coding RNAs (lncRNAs) are key regulators in various biological processes, including cell proliferation, apoptosis, migration, and invasion. Recent studies have revealed that lncRNAs play an important role in the therapeutic resistance of CSCs. Here we summarize the latest studies on the regulatory role of lncRNAs in sustaining the stemness of CSCs, and discuss the associated mechanisms behind these behavior changes in CSCs-related chemo- and immune-resistance. Future research implications are also discussed, shedding light on the potential CSCs-targeted strategies to break through the resistance of current therapies.
Collapse
Affiliation(s)
- Chongyang Shen
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Anhui, 230038, China
| | - Chuan Yang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, 610041, China
| | - Bing Xia
- Department of Radiation Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| |
Collapse
|
19
|
Srivastava J, Chaturvedi CP, Rahman K, Gupta R, Sharma A, Chandra D, Singh MK, Gupta A, Yadav S, Nityanand S. Differential expression of miRNAs and their target genes: Exploring a new perspective of acquired aplastic anemia pathogenesis. Int J Lab Hematol 2020; 42:501-509. [PMID: 32490599 DOI: 10.1111/ijlh.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION MicroRNAs (miRNAs) play a critical role in orchestrating T cell differentiation and activation and may thus play a vital role in acquired aplastic anemia (aAA). The study aimed to evaluate the differential expression of selected miRNAs and their relevant target genes in bone marrow samples of aAA patients. METHODS Differential expression of 8 miRNAs viz; hsa-miR-126-3p, miR-145-5p, miR-155-5p, miR-150-5p, miR-146b-5p, miR-34a, miR-29a, and miR-29b was evaluated in the bone marrow mononuclear cells of aAA patients. TaqMan microRNA assay was performed for preparing the cDNA of specific miRNA, followed by expression analysis using qRT-PCR. Data were normalized using two endogenous controls, RNU6B and RNU48. Delta-delta CT method was used to calculate the fold change (FC) of miRNA expression in individual samples, and a FC of >1.5 was taken as significant. Target genes of these miRNAs were evaluated by qRT-PCR. RESULTS Thirty five samples of aAA patients and 20 controls were evaluated. Irrespective of the disease severity, five miRNAs were found to be deregulated; miR-126 (FC-0.348; P-value-.0001) and miR-145 (FC-0.31; P-value-.0001) were downregulated, while miR-155 (FC-3.50; P-value-.0067), miR-146 (FC-3.13; P-value-.0105), and miR-150 (FC-5.78; P-value-.0001) were upregulated. Target gene study revealed an upregulation of PIK3R2, MYC, SOCS1, and TRAF-6, and downregulation of MYB. CONCLUSION This is the first study from the Indian subcontinent demonstrating the presence of altered miRNA expression in the bone marrow samples of aAA patients, suggesting their role in the pathogenesis of the disease. A comprehensive study focusing on the effect of these miRNA-mRNA interactions is likely to open new avenues of management.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Chandra P Chaturvedi
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Khaliqur Rahman
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Ruchi Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Akhilesh Sharma
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Dinesh Chandra
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Manish K Singh
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Anshul Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Sanjeev Yadav
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Soniya Nityanand
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
20
|
Lee DJ. The relationship between TIGIT + regulatory T cells and autoimmune disease. Int Immunopharmacol 2020; 83:106378. [PMID: 32172208 PMCID: PMC7250710 DOI: 10.1016/j.intimp.2020.106378] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
The role of regulatory T cells (Treg cell) in controlling autoimmune disease is an area of intense study. As such, the characterization and understanding the function of Treg markers has the potential to provide a considerable impact in developing treatments and understanding the pathogenesis of autoimmune diseases. One such inhibitory Treg cell marker that has been recently discovered is T cell immunoglobulin and ITIM domain (TIGIT). In this review, we discuss what is known about the expression and function of TIGIT on Treg cells, and we discuss the relationship between TIGIT expressing Treg cells and different autoimmune diseases such as atopic dermatitis, autoimmune thyroiditis, type 1 diabetes, autoimmune uveitis, aplastic anemia, multiple sclerosis, systemic lupus erythematosus, arthritis, and colitis.
Collapse
Affiliation(s)
- Darren J Lee
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK, USA.
| |
Collapse
|
21
|
Lu S, Yadav AK, Qiao X. Identification of potential miRNA–mRNA interaction network in bone marrow T cells of acquired aplastic anemia. Hematology 2020; 25:168-175. [PMID: 32338587 DOI: 10.1080/16078454.2020.1757332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Shuanglong Lu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Anil Kumar Yadav
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaohong Qiao
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
22
|
Curdy N, Lanvin O, Laurent C, Fournié JJ, Franchini DM. Regulatory Mechanisms of Inhibitory Immune Checkpoint Receptors Expression. Trends Cell Biol 2019; 29:777-790. [DOI: 10.1016/j.tcb.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
|