1
|
Borlak J, Ciribilli Y, Bisio A, Selvaraj S, Inga A, Oh JH, Spanel R. The Abl1 tyrosine kinase is a key player in doxorubicin-induced cardiomyopathy and its p53/p73 cell death mediated signaling differs in atrial and ventricular cardiomyocytes. J Transl Med 2024; 22:845. [PMID: 39285385 PMCID: PMC11403941 DOI: 10.1186/s12967-024-05623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Doxorubicin is an important anticancer drug, however, elicits dose-dependently cardiomyopathy. Given its mode of action, i.e. topoisomerase inhibition and DNA damage, we investigated genetic events associated with cardiomyopathy and searched for mechanism-based possibilities to alleviate cardiotoxicity. We treated rats at clinically relevant doses of doxorubicin. Histopathology and transmission electron microscopy (TEM) defined cardiac lesions, and transcriptomics unveiled cardiomyopathy-associated gene regulations. Genomic-footprints revealed critical components of Abl1-p53-signaling, and EMSA-assays evidenced Abl1 DNA-binding activity. Gene reporter assays confirmed Abl1 activity on p53-targets while immunohistochemistry/immunofluorescence microscopy demonstrated Abl1, p53&p73 signaling. RESULTS Doxorubicin treatment caused dose-dependently toxic cardiomyopathy, and TEM evidenced damaged mitochondria and myofibrillar disarray. Surviving cardiomyocytes repressed Parkin-1 and Bnip3-mediated mitophagy, stimulated dynamin-1-like dependent mitochondrial fission and induced anti-apoptotic Bag1 signaling. Thus, we observed induced mitochondrial biogenesis. Transcriptomics discovered heterogeneity in cellular responses with minimal overlap between treatments, and the data are highly suggestive for distinct cardiomyocyte (sub)populations which differed in their resilience and reparative capacity. Genome-wide footprints revealed Abl1 and p53 enriched binding sites in doxorubicin-regulated genes, and we confirmed Abl1 DNA-binding activity in EMSA-assays. Extraordinarily, Abl1 signaling differed in the heart with highly significant regulations of Abl1, p53 and p73 in atrial cardiomyocytes. Conversely, in ventricular cardiomyocytes, Abl1 solely-modulated p53-signaling that was BAX transcription-independent. Gene reporter assays established Abl1 cofactor activity for the p53-reporter PG13-luc, and ectopic Abl1 expression stimulated p53-mediated apoptosis. CONCLUSIONS The tyrosine kinase Abl1 is of critical importance in doxorubicin induced cardiomyopathy, and we propose its inhibition as means to diminish risk of cardiotoxicity.
Collapse
Affiliation(s)
- Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
2
|
Su Y, Liu J, Tian Y, Dong H, Shi M, Zhang J, Li W, Huang Q, Xiang N, Wang C, Liu J, He L, Hu L, Haberman AM, Liu H, Yang X. HIF-1α Mediates Immunosuppression and Chemoresistance in Colorectal Cancer by Inhibiting CXCL9, -10 and -11. Biomed Pharmacother 2024; 173:116427. [PMID: 38484558 DOI: 10.1016/j.biopha.2024.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Uncertainty exists regarding the mechanisms by which hypoxia-inducible factors (HIFs) control CD8+T-cell migration into tumor microenvironments. Here, we found that HIF-1α knockdown or overexpression resulted in increased or decreased CXCL9, -10, and -11 expression in vitro, respectively. Gene Set Variation Analysis revealed that elevated HIF-1α levels correlated with a poor prognosis, severe pathological stage, and an absence of CD8+ T cells in the tumor microenvironment in colorectal cancer (CRC) patients. HIF-1α was inversely associated with pathways beneficial to anti-tumor immunotherapy and cytokine/chemokine function. In vivo, inhibiting HIF-1α or its upstream regulator BIRC2 significantly suppressed tumor growth and promoted CD8+ T-cell infiltration. CXCR3 neutralizing antibodies reversed these effects, implicating the involvement of CXCL9, -10, and -11/CXCR3 axis. The presence of HIF-1α weakened the upregulation of CXCL9, -10, and -11 by bleomycin and doxorubicin. Combining HIF-1α inhibition with bleomycin promoted CD8+ T-cell infiltration and tumor suppression in vivo. Moreover, doxorubicin could upregulate CXCL9, -10 and -11 by suppressing HIF-1α. Our findings highlight the potential of HIF-1α inhibition to improve CRC microenvironments and increase chemotherapy sensitivity.
Collapse
Affiliation(s)
- Yixi Su
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of Immunobiology, School of Medicine, Yale University, CT, USA
| | - Jiaqi Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yu Tian
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Haiyan Dong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Mengchen Shi
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weiqian Li
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qiang Huang
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nanlin Xiang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Chen Wang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jun Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Lingyuan He
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Limei Hu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ann M Haberman
- Department of Immunobiology, School of Medicine, Yale University, CT, USA
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
3
|
Zhu J, Dai Y, Tang B, Zhang H. The association between serum heat shock protein 72 and intestinal permeability with intestinal microbiota and clinical severity in patients with cerebral infarction. Front Med (Lausanne) 2024; 10:1302460. [PMID: 38264043 PMCID: PMC10803404 DOI: 10.3389/fmed.2023.1302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Objectives We aimed to compare serum heat shock protein 72 (HSP72) and intestinal permeability in patients with cerebral infarction (CI) and healthy individuals to reveal their correlations and link to gut microbiota alterations and clinical severity of CI. Methods and results Stool samples of 50 patients with CI and 46 healthy volunteers were analyzed through 16S rRNA gene sequencing to characterize intestinal flora profiles. Serum HSP72 and zonulin were assayed using enzyme-linked immunoassay (ELISA). The obtained data were then subjected to comparative and correlative analysis. We found that the levels of zonulin and serum HSP72 were significantly higher in the CI group compared to the healthy group. Serum HSP72 and zonulin levels were positively correlated in the CI group and correlated positively with the clinical severity of CI. β diversity showed significant differences in intestinal microbiota composition between the two groups. In the CI patient group, the abundance of bacteria Eubacterium_fissicatena_group, Eubacterium_eligens_group, and Romboutsia manifested a remarkably positive correlation with serum HSP72. The abundance of bacteria Eubacterium_fissicatena_group and Acetivibrio had a significantly positive correlation with zonulin levels. Conclusion Our findings indicated that an increase in serum HSP72 and zonulin levels was manifested in patients with CI and was related to specific gut microbiota alterations and the clinical severity of CI.
Collapse
Affiliation(s)
| | | | - Bo Tang
- Department of Neurology, Hangzhou First People’s Hospital, Hangzhou, China
| | - Hao Zhang
- Department of Neurology, Hangzhou First People’s Hospital, Hangzhou, China
| |
Collapse
|
4
|
Simos YV, Zerikiotis S, Lekkas P, Zachariou C, Halabalaki M, Ververidis F, Trantas EA, Tsamis K, Peschos D, Angelidis C, Vezyraki P. Hydroxytyrosol produced by engineered Escherichia coli strains activates Nrf2/HO-1 pathway: An in vitro and in vivo study. Exp Biol Med (Maywood) 2023; 248:1598-1612. [PMID: 37691393 PMCID: PMC10676126 DOI: 10.1177/15353702231187647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/05/2023] [Indexed: 09/12/2023] Open
Abstract
This study explores the biological effects of hydroxytyrosol (HT), produced by the metabolic engineering of Escherichia coli, in a series of in vitro and in vivo experiments. In particular, a metabolically engineered Escherichia coli strain capable of producing HT was constructed and utilized. HEK293 and HeLa cells were exposed to purified HT to determine non-toxic doses that can offer protection against oxidative stress (activation of Nrf2/HO-1 signaling pathway). Male CD-1 mice were orally supplemented with HT to evaluate (1) renal and hepatic toxicity, (2) endogenous system antioxidant response, and (3) activation of Nrf2/HO-1 system in the liver. HT protected cells from oxidative stress through the activation of Nrf2 regulatory network. Activation of Nrf2 signaling pathway was also observed in the hepatic tissue of the mice. HT supplementation was safe and produced differential effects on mice's endogenous antioxidant defense system. HT biosynthesized from genetically modified Escherichia coli strains is an alternative method to produce high-quality HT that exerts favorable effects in the regulation of the organism's response to oxidative stress. Nonetheless, further investigation of the multifactorial action of HT on the antioxidant network regulation is needed.
Collapse
Affiliation(s)
- Yannis V Simos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Stelios Zerikiotis
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Panagiotis Lekkas
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Christianna Zachariou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, Athens 11527, Greece
| | - Filippos Ververidis
- Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
- Agri-Food and Life Sciences Institute, Research Center of the Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
| | - Emmanouil A Trantas
- Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
- Agri-Food and Life Sciences Institute, Research Center of the Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
| | - Konstantinos Tsamis
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Charalampos Angelidis
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Patra Vezyraki
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
5
|
Bradic J, Andjic M, Novakovic J, Kocovic A, Tomovic M, Petrovic A, Nikolic M, Mitrovic S, Jakovljevic V, Pecarski D. Lady's Bedstraw as a Powerful Antioxidant for Attenuation of Doxorubicin-Induced Cardiotoxicity. Antioxidants (Basel) 2023; 12:1277. [PMID: 37372007 DOI: 10.3390/antiox12061277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to examine the effects of a 14-day treatment with lady's bedstraw methanol extract on doxorubicin-induced cardiotoxicity through functional, biochemical and histological examinations. We used 24 male Wistar albino rats divided into the following groups: control (CTRL), doxorubicin (DOX), and DOX + GVE (Galium verum extract). GVE was administered orally at a dose of 50 mg/kg per day for 14 days, while a single dose of doxorubicin was injected into the DOX groups. After accomplishing treatment with GVE, cardiac function was assessed, which determined the redox state. During the autoregulation protocol on the Langendorff apparatus, ex vivo cardiodynamic parameters were measured. Our results demonstrated that the consumption of GVE effectively suppressed the disturbed response of the heart to changes in perfusion pressures caused by administration of DOX. Intake of GVE was associated with a reduction in most of the measured prooxidants in comparison to the DOX group. Moreover, this extract was capable of increasing the activity of the antioxidant defense system. Morphometric analyses showed that rat hearts treated with DOX showed more pronounced degenerative changes and necrosis compared to the CTRL group. However, GVE pretreatment seems to be able to prevent the pathological injuries caused by DOX injection via decrease in oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
| | - Jovana Novakovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
| | - Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
| | - Marina Tomovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Anica Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
| | - Marina Nikolic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Moscow 119991, Russia
| | - Danijela Pecarski
- The College of Health Science, Academy of Applied Studies Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
7
|
Negahdary M, Hirata MH, Sakata SK, Ciconelli RM, Bastos GM, Borges JB, Thurow HS, Junior ATS, Sampaio MF, Guimarães LB, Maeda BS, Angnes L. Sandwich-like electrochemical aptasensing of heat shock protein 70 kDa (HSP70): Application in diagnosis/prognosis of coronavirus disease 2019 (COVID-19). Anal Chim Acta 2023; 1242:340716. [PMID: 36657883 PMCID: PMC9729787 DOI: 10.1016/j.aca.2022.340716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In this research, by using aptamer-conjugated gold nanoparticles (aptamer-AuNPs) and a modified glassy carbon electrode (GCE) with reduced graphene oxide (rGO) and Acropora-like gold (ALG) nanostructure, a sandwich-like system provided for sensitive detection of heat shock protein 70 kDa (HSP70), which applied as a functional biomarker in diagnosis/prognosis of COVID-19. Initially, the surface of the GCE was improved with rGO and ALG nanostructures, respectively. Then, an aptamer sequence as the first part of the bioreceptor was covalently bound on the surface of the GCE/rGO/ALG nanostructures. After adding the analyte, the second part of the bioreceptor (aptamer-AuNPs) was immobilized on the electrode surface to improve the diagnostic performance. The designed aptasensor detected HSP70 in a wide linear range, from 5 pg mL-1 to 75 ng mL-1, with a limit of detection (LOD) of ∼2 pg mL-1. The aptasensor was stable for 3 weeks and applicable in detecting 40 real plasma samples of COVID-19 patients. The diagnostic sensitivity and specificity were 90% and 85%, respectively, compared with the reverse transcription-polymerase chain reaction (RT-PCR) method.
Collapse
Affiliation(s)
- Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, Brazil,Corresponding author
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av Prof Lineu Prestes 580, 05508-000, São Paulo, Brazil
| | - Solange Kazumi Sakata
- Nuclear and Energy Research Institute, National Commission of Nuclear Energy (IPEN/CNEN - SP), São Paulo, SP, 05508-000, Brazil
| | | | - Gisele Medeiros Bastos
- Research and Education Division, Hospital A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - Jéssica Bassani Borges
- Research and Education Division, Hospital A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - Helena Strelow Thurow
- Research and Education Division, Hospital A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - Alceu Totti Silveira Junior
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Marcelo Ferraz Sampaio
- Research and Education Division, Hospital A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | | | - Bruno Sussumu Maeda
- Research and Education Division, Hospital A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, Brazil,Corresponding author
| |
Collapse
|
8
|
Dadson K, Thavendiranathan P, Hauck L, Grothe D, Azam MA, Stanley-Hasnain S, Mahiny-Shahmohammady D, Si D, Bokhari M, Lai PF, Massé S, Nanthakumar K, Billia F. Statins Protect Against Early Stages of Doxorubicin-induced Cardiotoxicity Through the Regulation of Akt Signaling and SERCA2. CJC Open 2022; 4:1043-1052. [PMID: 36562012 PMCID: PMC9764135 DOI: 10.1016/j.cjco.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/10/2022] [Indexed: 12/25/2022] Open
Abstract
Background Doxorubicin-induced cardiomyopathy (DICM) is one of the complications that can limit treatment for a significant number of cancer patients. In animal models, the administration of statins can prevent the development of DICM. Therefore, the use of statins with anthracyclines potentially could enable cancer patients to complete their chemotherapy without added cardiotoxicity. The precise mechanism mediating the cardioprotection is not well understood. The purpose of this study is to determine the molecular mechanism by which rosuvastatin confers cardioprotection in a mouse model of DICM. Methods Rosuvastatin was intraperitoneally administered into adult male mice at 100 μg/kg daily for 7 days, followed by a single intraperitoneal doxorubicin injection at 10 mg/kg. Animals continued to receive rosuvastatin daily for an additional 14 days. Cardiac function was assessed by echocardiography. Optical calcium mapping was performed on retrograde Langendorff perfused isolated hearts. Ventricular tissue samples were analyzed by immunofluorescence microscopy, Western blotting, and quantitative polymerase chain reaction. Results Exposure to doxorubicin resulted in significantly reduced fractional shortening (27.4% ± 1.11% vs 40% ± 5.8% in controls; P < 0.001) and re-expression of the fetal gene program. However, we found no evidence of maladaptive cardiac hypertrophy or adverse ventricular remodeling in mice exposed to this dose of doxorubicin. In contrast, rosuvastatin-doxorubicin-treated mice maintained their cardiac function (39% ± 1.26%; P < 0.001). Mechanistically, the effect of rosuvastatin was associated with activation of Akt and phosphorylation of phospholamban with preserved sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (SERCA2)-mediated Ca2+ reuptake. These effects occurred independently of perturbations in ryanodine receptor 2 function. Conclusions Rosuvastatin counteracts the cardiotoxic effects of doxorubicin by directly targeting sarcoplasmic calcium cycling.
Collapse
Affiliation(s)
- Keith Dadson
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ludger Hauck
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Grothe
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Ali Azam
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Shanna Stanley-Hasnain
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Daoyuan Si
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Mahmoud Bokhari
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Patrick F.H. Lai
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Stéphane Massé
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,Corresponding author: Dr Filio Billia, Toronto General Hospital Research Institute, University Health Network, University of Toronto, 101 College St., Toronto, Ontario, M5G 1L7 Canada. Tel.: +1-416-340-4800 x6805; fax: +1-416-340-4012.
| |
Collapse
|
9
|
Analysis of Therapeutic Targets of A Novel Peptide Athycaltide-1 in the Treatment of Isoproterenol-Induced Pathological Myocardial Hypertrophy. Cardiovasc Ther 2022; 2022:2715084. [PMID: 35599721 PMCID: PMC9085328 DOI: 10.1155/2022/2715084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial hypertrophy is a pathological feature of many heart diseases. This is a complex process involving all types of cells in the heart and interactions with circulating cells. This study is aimed at identifying the differentially expressed proteins (DEPs) in myocardial hypertrophy rats induced by isoprenaline (ISO) and treated with novel peptide Athycaltide-1 (ATH-1) and exploring the mechanism of its improvement. ITRAQ was performed to compare the three different heart states in control group, ISO group, and ATH-1 group. Pairwise comparison showed that there were 121 DEPs in ISO/control (96 upregulated and 25 downregulated), 47 DEPs in ATH-1/ISO (27 upregulated and 20 downregulated), and 116 DEPs in ATH-1/control (77 upregulated and 39 downregulated). Protein network analysis was then performed using the STRING software. Functional analysis revealed that Hspa1 protein, oxidative stress, and MAPK signaling pathway were significantly involved in the occurrence and development of myocardial hypertrophy, which was further validated by vivo model. It is proved that ATH-1 can reduce the expression of Hspa1 protein and the level of oxidative stress in hypertrophic myocardium and further inhibit the phosphorylation of p38 MAPK, JNK, and ERK1/2.
Collapse
|
10
|
de Oliveira AA, Mendoza VO, Rastogi S, Nunes KP. New insights into the role and therapeutic potential of HSP70 in diabetes. Pharmacol Res 2022; 178:106173. [PMID: 35278625 DOI: 10.1016/j.phrs.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Emerging evidence indicates that HSP70 represents a key mechanism in the pathophysiology of β-cell dysfunction, insulin resistance, and various diabetic complications, including micro- and macro-vascular alterations, as well as impaired hemostasis. Hyperglycemia, a hallmark of both types of diabetes, increases the circulating levels of HSP70 (eHSP70), but there is still divergence about whether diabetes up- or down-regulates the intracellular fraction of this protein (iHSP70). Here, we consider that iHSP70 levels reduce in diabetic arterial structures and that the vascular system is in direct contact with all other systems in the body suggesting that a systemic response might also be happening for iHSP70, which is characterized by decreased levels of HSP70 in the vasculature. Furthermore, although many pathways have been proposed to explain HSP70's functions in diabetes, and organs/tissues/cells-specific variations occur, the membrane-bound receptor of the innate immune system, Toll-like receptor 4, and its downstream signal transduction pathways appear to be a constant, not only when we explore the actions of eHSP70, but also when we assess the contributions of iHSP70. In this review, we focus on discussing the multiple roles of HSP70 across organs/tissues/cells affected by hyperglycemia to further explore the possibility of targeting this protein with pharmacological and non-pharmacological approaches in the context of diabetes.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Valentina Ochoa Mendoza
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Swasti Rastogi
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
11
|
Krishnan V, Dharamdasani V, Bakre S, Dhole V, Wu D, Budnik B, Mitragotri S. Hyaluronic Acid Nanoparticles for Immunogenic Chemotherapy of Leukemia and T-Cell Lymphoma. Pharmaceutics 2022; 14:466. [PMID: 35214193 PMCID: PMC8874923 DOI: 10.3390/pharmaceutics14020466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Ratiometric delivery of combination chemotherapy can achieve therapeutic efficacy based on synergistic interactions between drugs. It is critical to design such combinations with drugs that complement each other and reduce cancer growth through multiple mechanisms. Using hyaluronic acid (HA) as a carrier, two chemotherapeutic agents-doxorubicin (DOX) and camptothecin (CPT)-were incorporated and tested for their synergistic potency against a broad panel of blood-cancer cell lines. The pair also demonstrated the ability to achieve immunogenic cell death by increasing the surface exposure levels of Calreticulin, thereby highlighting its ability to induce apoptosis via an alternate pathway. Global proteomic profiling of cancer cells treated with HA-DOX-CPT identified pathways that could potentially predict patient sensitivity to HA-DOX-CPT. This lays the foundation for further exploration of integrating drug delivery and proteomics in personalized immunogenic chemotherapy.
Collapse
Affiliation(s)
- Vinu Krishnan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Vimisha Dharamdasani
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Shirin Bakre
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
| | - Ved Dhole
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
| | - Debra Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Bogdan Budnik
- Mass Spectrometry Proteomics and Research Laboratory, FAS Division of Science, Harvard University, Cambridge, MA 02138, USA;
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
12
|
Kong CY, Guo Z, Song P, Zhang X, Yuan YP, Teng T, Yan L, Tang QZ. Underlying the Mechanisms of Doxorubicin-Induced Acute Cardiotoxicity: Oxidative Stress and Cell Death. Int J Biol Sci 2022; 18:760-770. [PMID: 35002523 PMCID: PMC8741835 DOI: 10.7150/ijbs.65258] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a destructive disease that causes high levels of morbidity and mortality. Doxorubicin (DOX) is a highly efficient antineoplastic chemotherapeutic drug, but its use places survivors at risk for cardiotoxicity. Many studies have demonstrated that multiple factors are involved in DOX-induced acute cardiotoxicity. Among them, oxidative stress and cell death predominate. In this review, we provide a comprehensive overview of the mechanisms underlying the source and effect of free radicals and dependent cell death pathways induced by DOX. Hence, we attempt to explain the cellular mechanisms of oxidative stress and cell death that elicit acute cardiotoxicity and provide new insights for researchers to discover potential therapeutic strategies to prevent or reverse doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| |
Collapse
|
13
|
Rankovic M, Draginic N, Jeremic J, Samanovic AM, Stojkov S, Mitrovic S, Jeremic N, Radonjic T, Srejovic I, Bolevich S, Svistunov A, Jakovljevic V, Turnic TN. Protective Role of Vitamin B 1 in Doxorubicin-Induced Cardiotoxicity in Rats: Focus on Hemodynamic, Redox, and Apoptotic Markers in Heart. Front Physiol 2021; 12:690619. [PMID: 34630136 PMCID: PMC8494423 DOI: 10.3389/fphys.2021.690619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Up until now, the specific mechanisms involved in doxorubicin (DOX)-induced cardiotoxicity have not been fully elucidated. Since thiamine deficiency is associated with myocardial dysfunction and it may lead to cardiomyopathy, we aimed to investigate whether thiamine (Vitamin B1) treatment provides cardioprotection and modulates DOX mediated subchronic cardiotoxicity as well as to determine possible mechanisms of its effects. The study involved 48 Wistar albino rats divided into four groups: healthy non-treated rats and healthy rats treated with thiamine and DOX rats without treatment and DOX rats treated with thiamine. DOX was applied as a single i.p.injection (15mg/kg), while thiamine treatment lasted 7days (25mg/kg/dayi.p.). Before and after the treatment hemodynamic changes were monitored in vivo by echocardiography. When the protocol was completed, animals were sacrificed and rat hearts were isolated in order to evaluate parameters of cardiac oxidative stress [superoxide anion radical-O2 -, hydrogen peroxide-H2O2, nitric oxide-NO-, index of lipid peroxidation-thiobarbituric acid (TBA) reactive substances (TBARS), superoxide dismutase - SOD, catalase (CAT), and reduced glutathione-GSH] and apoptosis (Bax, Bcl-2, caspases). DOX treatment significantly reduced the ejection fraction, while thiamine treatment led to its minor increase in the DOX-treated group. In that sense, heart oxidative stress markers were significantly increased in DOX-treated rats, while therapeutic dose of thiamine decreased the levels of free radicals. Our study demonstrated the promising ameliorative effects of thiamine against DOX-induced cardiotoxicity through modulation of oxidative stress, suppression of apoptosis, and possibility to improve myocardial performance and morphometric structure of rats` hearts.
Collapse
Affiliation(s)
- Marina Rankovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Svetlana Stojkov
- Department of Pharmacy, Novi Sad University Business Academy, College of Vocational Studies for the Education of Preschool Teachers and Sports Trainers, Subotica, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey Svistunov
- Research Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tamara Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
14
|
Hong Y, Wang Z, Rao Z, Wan J, Ling X, Zheng Q. Changes in Expressions of HSP27, HSP70, and Soluble Glycoprotein in Heart Failure Rats Complicated with Pulmonary Edema and Correlations with Cardiopulmonary Functions. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6733341. [PMID: 34337047 PMCID: PMC8315849 DOI: 10.1155/2021/6733341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022]
Abstract
The study is aimed at investigating the changes in expressions of heat shock protein 27 (HSP27), HSP70, and soluble glycoprotein (SGP) in heart failure (HF) rats complicated with pulmonary edema and exploring their potential correlations with cardiopulmonary functions. The rat model of HF was established, and the rats were divided into HF model group (model group, n = 15) and normal group (n = 15). After successful modeling, MRI and ECG were applied to detect the cardiac function indexes of the rats. The myocardial function indexes were determined, the injury of myocardial tissues was observed via hematoxylin and eosin (HE) staining, and the content of myeloperoxidase (MPO), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α) in the blood was measured. The partial pressure of oxygen (PaO2) and oxygenation index (OI) were observed, and the airway resistance and lung compliance were examined. Moreover, quantitative polymerase chain reaction (qPCR) and Western blotting assay were performed to detect the gene and protein expression levels of HSP27, HSP70, and SGP130. The levels of serum creatine kinase (CK), creatine (Cr), and blood urea nitrogen (BUN) were increased markedly in model group (p < 0.05). Model group had notably decreased fractional shortening (FS) and ejection fraction (EF) compared with normal group (p < 0.05), while the opposite results of left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) were detected. In model group, the content of serum MPO, MMP-9, and TNF-α was raised remarkably (p < 0.05), OI and PaO2 were reduced notably (p < 0.05), the airway resistance was increased (p < 0.05), and the lung compliance was decreased (p < 0.05). Obviously elevated gene and protein expression levels of HSP27, HSP70, and SGP130 were detected in model group (p < 0.05). The expressions of HSP27, HSP70, and SGP130 are increased in HF rats complicated with pulmonary edema, seriously affecting the cardiopulmonary functions of the rats.
Collapse
Affiliation(s)
- Yingcai Hong
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Zheng Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Zhanpeng Rao
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Jun Wan
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Xie'an Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| | - Qijun Zheng
- Department of Cardiac Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020 Guangdong, China
| |
Collapse
|
15
|
The Effects of Bergamot Polyphenolic Fraction, Cynara cardunculus, and Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity. Nutrients 2021; 13:nu13072158. [PMID: 34201904 PMCID: PMC8308299 DOI: 10.3390/nu13072158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
Doxorubicin is an anthracycline that is commonly used as a chemotherapy drug due to its cytotoxic effects. The clinical use of doxorubicin is limited due to its known cardiotoxic effects. Treatment with anthracyclines causes heart failure in 15–17% of patients, resulting in mitochondrial dysfunction, the accumulation of reactive oxygen species, intracellular calcium dysregulation, the deterioration of the cardiomyocyte structure, and apoptotic cell death. Polyphenols have a wide range of beneficial properties, and particular importance is given to Bergamot Polyphenolic Fraction; Oleuropein, one of the main polyphenolic compounds of olive oil; and Cynara cardunculus extract. These natural compounds have particular beneficial characteristics, owing to their high polyphenol contents. Among these, their antioxidant and antoproliferative properties are the most important. The aim of this paper was to investigate the effects of these three plant derivatives using an in vitro model of cardiotoxicity induced by the treatment of rat embryonic cardiomyoblasts (H9c2) with doxorubicin. The biological mechanisms involved and the crosstalk existing between the mitochondria and the endoplasmic reticulum were examined. Bergamot Polyphenolic Fraction, Oleuropein, and Cynara cardunculus extract were able to decrease the damage induced by exposure to doxorubicin. In particular, these natural compounds were found to reduce cell mortality and oxidative damage, increase the lipid content, and decrease the concentration of calcium ions that escaped from the endoplasmic reticulum. In addition, the direct involvement of this cellular organelle was demonstrated by silencing the ATF6 arm of the Unfolded Protein Response, which was activated after treatment with doxorubicin.
Collapse
|
16
|
Karabulut D, Ozturk E, Kaymak E, Akin AT, Yakan B. Thymoquinone attenuates doxorubicin-cardiotoxicity in rats. J Biochem Mol Toxicol 2020; 35:e22618. [PMID: 32860490 DOI: 10.1002/jbt.22618] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 01/04/2023]
Abstract
Contrary to the fact that doxorubicin is a powerful chemotherapeutic agent for the treatment of neoplastic diseases, cardiotoxicity is too important to be ignored. Thymoquinone serves as a powerful free radical scavenger. In the study, the effects of thymoquinone against doxorubicin-cardiotoxicity will be evaluated. Forty rats were divided into five groups. Group I: control group (n = 8); group II: olive oil group (n = 8); group III: thymoquinone group (n = 8); given 10 mg/kg thymoquinone intraperitoneally per day throughout the experiment; group IV: doxorubicin group (n = 8); injected with a single dose of 15 mg/kg ip doxorubicin on the 7th day of the experiment; group V: doxorubicin + thymoquinone group (n = 8); administered with 10 mg/kg thymoquinone per day during the experiment and 15 mg/kg doxorubicin ip on the 7th day. The experiment was planned for 14 days. Immunohistochemically, heat shock protein (HSP) 70 and HSP90, glucose-regulated protein 78 (GRP78), caspase-3 were stained. We made terminal deoxynucleotidyl transferase dUTP nick end labeling for apoptotic evaluation. Total oxidant status (TOS) levels and total antioxidant status (TAS) were measured in the heart tissue. Atrial natriuretic peptide (ANP) and pro-B type natriuretic peptide (proBNP) were evaluated. In the study, HSP70, HSP90, GRP78, and caspase-3 levels increased in group IV. TOS and TAS levels were significant compared to group I. Doxorubicin significantly increased ANP and NT-proBNP levels. Thymoquinone revealed significant differences in these values. Thymoquinone can be an important cardioprotective agent against doxorubicin-cardiotoxicity.
Collapse
Affiliation(s)
- Derya Karabulut
- Department of the Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Emel Ozturk
- Department of the Histology and Embryology, Harran University, Sanlıurfa, Turkey
| | - Emin Kaymak
- Department of the Histology and Embryology, Bozok University, Yozgat, Turkey
| | - Ali Tuğrul Akin
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of the Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
17
|
Dhima I, Zerikiotis S, Lekkas P, Simos YV, Gkiouli M, Vezyraki P, Dounousi E, Ragos V, Giannakopoulos X, Baltogiannis D, Kalfakakou V, Evangelou A, Peschos D, Karkabounas S. Curcumin Acts as a Chemosensitizer for Leiomyosarcoma Cells In Vitro But Fails to Mediate Antioxidant Enzyme Activity in Cisplatin-Induced Experimental Nephrotoxicity in Rats. Integr Cancer Ther 2019; 18:1534735419872811. [PMID: 31441361 PMCID: PMC6710690 DOI: 10.1177/1534735419872811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background. Cisplatin (cis-diamminedichloroplatinum) is a widely used chemotherapeutic agent for the treatment of various cancers. Although it represents an effective regimen, its application is accompanied by side effects to normal tissues, especially to the kidneys. Cisplatin generates free radicals and impairs the function of antioxidant enzymes. Modulation of cisplatin-induced oxidative stress by specific antioxidant molecules represents an attractive approach to minimize side effects. Methods. We studied the ability of curcumin to sensitize leiomyosarcoma (LMS) cells to cisplatin. Assays for cell proliferation, mitochondrial function, induction of apoptosis, and cell cycle arrest were performed using various concentrations of cisplatin and a concentration of curcumin that caused a nonsignificant reduction in cell viability. Moreover, the effect of curcumin was examined against cisplatin-induced experimental nephrotoxicity. Renal injury was assessed by measuring serum creatinine, blood urea nitrogen (BUN), and the kidney's relative weight. Oxidative stress was measured by means of enzymatic activities of superoxide dismutase and glutathione peroxidase in the rats' blood and malondialdehyde levels in rats' urine. Results. In our study, we found that curcumin sensitizes LMS cells to cisplatin by enhancing apoptosis and impairing mitochondrial function. In an in vivo model of cisplatin-induced experimental nephrotoxicity, intraperitoneal administration of curcumin failed to preserve blood's antioxidant enzyme activity and decrease lipid peroxidation. Nevertheless, curcumin was able to protect nephrons' histology from cisplatin's toxic effect. Conclusion. Our results showed that curcumin can act as chemosensitizer, but its role as an adjunctive cisplatin-induced oxidative stress inhibitor requires further dose-finding studies to maximize the effectiveness of chemotherapy.
Collapse
|
18
|
Liu L, Huang Y, Feng X, Chen J, Duan Y. Overexpressed Hsp70 alleviated formaldehyde-induced apoptosis partly via PI3K/Akt signaling pathway in human bronchial epithelial cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:495-504. [PMID: 30600586 DOI: 10.1002/tox.22703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Formaldehyde (FA) is a ubiquitous environmental pollutant, which can induce apoptosis in lung cell and is related to the pathogenesis of asthma, pneumonia, and chronic obstructive pulmonary disease. Heat shock protein 70 (Hsp70) is an ATP-dependent molecular chaperone and exhibits an anti-apoptosis ability in a variety of cells. Previous studies reported that the expression of Hsp70 was induced when organisms were exposed to FA. Whether Hsp70 plays a role in the FA-induced apoptosis and the involved cell signaling pathway remain largely unknown. In this study, human bronchial epithelial cells with overexpressed Hsp70 and the control were exposed to different concentrations of FA (0, 40, 80, and 160 μmol/L) for 24 hours. Apoptosis and the expression levels of PI3K, Akt, p-Akt, MEK, p-MEK, and GLI2 were detected by Annexin-APC/7AAD double-labeled flow cytometry and western blot. The results showed that overexpression of Hsp70 decreased the apoptosis induced by FA and alleviated the decline of PI3k and p-Akt significantly. Inhibitor (LY 294002, a specific inhibitor of PI3K-Akt) test result indicated that PI3K-Akt signaling pathway was involved in the inhibition of FA-induced apoptosis by Hsp70 overexpression and also active in the maintenance of GLI2 level. However, it also suggested that other signaling pathways activated by overexpressed Hsp70 participated in this process, which was needed to be elucidated in further research.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yun Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Experimental Center for Preventive Medicine, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|