1
|
Wang X, Wang P. Effect of a protein kinase B (Akt) inhibitor on the angiogenesis of HUVECs and corneal neovascularization. Wien Klin Wochenschr 2024; 136:154-162. [PMID: 37261487 DOI: 10.1007/s00508-023-02208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Corneal neovascularization (CNV) is a vision-threatening disease and an increasing public health concern. It was found that administering an Akt inhibitor in the second phase of retinopathy significantly decreased retinal neovascularization. METHODS This study investigated the effect of an Akt inhibitor on the angiogenesis of human umbilical vein endothelial cells (HUVECs) and its impacts on the degree of CNV and corneal opacity in a rat keratoplasty model. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays, tube formation assays, cell scratch experiments, and a fully allogeneic corneal transplant model were performed. RESULTS It was found that an Akt inhibitor inhibited the proliferation, angiogenesis, and migration of HUVECs induced by vascular endothelial growth factor (VEGF). The results showed that both CNV and corneal opacity were decreased in rats after Akt inhibitor administration. CONCLUSION The research illustrates the vital role of Akt inhibitors in mediating CNV. The analysis shows that the Akt inhibitor may provide a novel and feasible therapeutic approach to prevent CNV, but its mechanism needs further investigation.
Collapse
Affiliation(s)
- Xing Wang
- Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, 400016, Chongqing, China
| | - Peng Wang
- Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
2
|
Lin W, Li S, Meng Y, Huang G, Liang S, Du J, Liu Q, Cheng B. UDCA Inhibits Hypoxic Hepatocellular Carcinoma Cell-Induced Angiogenesis Through Suppressing HIF-1α/VEGF/IL-8 Intercellular Signaling. Front Pharmacol 2021; 12:755394. [PMID: 34975472 PMCID: PMC8714963 DOI: 10.3389/fphar.2021.755394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background: A hypoxic microenvironment may induce angiogenesis and promote the development of hepatocellular carcinoma (HCC). The aim of this study was to evaluate whether ursodeoxycholic acid (UDCA) may inhibit hypoxic HCC cell-induced angiogenesis and the possible mechanisms. Methods: Tube formation and matrigel plug angiogenesis assays were used to evaluate angiogenesis in vitro and in vivo, respectively. Real-time PCR, enzyme-linked immunosorbent assay, and Western blot were used to evaluate the mRNA and protein expressions of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and IL-8, respectively. Dual-luciferase reporter assay was applied to assess the reporter gene expression of hypoxia-response element (HRE). Results: UDCA antagonized hypoxic Huh 7 cell-induced tube formation of EA.hy 926 cells. In HCC cells, UDCA inhibited hypoxia-induced upregulation of VEGF and IL-8 both in mRNA and protein levels. UDCA also inhibited IL-8-induced angiogenesis in vitro and in vivo through suppressing IL-8-induced phosphorylation of ERK. The levels of HIF-1α mRNA and protein and HRE-driven luciferase activity in HCC cells were upregulated by hypoxia and were all inhibited by UDCA. The proteasome inhibitor MG132 antagonized the effect of UDCA on HIF-1α degradation. In hypoxic condition, the phosphorylation of ERK and AKT was obviously increased in HCC cells, which was suppressed by UDCA. Transfection of the HIF-1α overexpression plasmid reversed the effects of UDCA on hypoxic HCC cell-induced angiogenesis, HRE activity, and expressions of IL-8 and VEGF. Conclusions: Our results demonstrated that UDCA could inhibit hypoxic HCC cell-induced angiogenesis through suppressing HIF-1α/VEGF/IL-8-mediated intercellular signaling between HCC cells and endothelial cells.
Collapse
Affiliation(s)
- Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongbin Meng
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Guokai Huang
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Juan Du
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qun Liu
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
3
|
Wang Y, Hong T, Chen L, Chu C, Zhu J, Zhang J, Wang C, Zheng J, Jiang N, Cui X. The natural extract degalactotigonin exerts antitumor effects on renal cell carcinoma cells through repressing YAP. Transl Cancer Res 2020; 9:7550-7561. [PMID: 35117355 PMCID: PMC8798755 DOI: 10.21037/tcr-20-1864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Background The pervasive progression of renal cell carcinoma (RCC) after treatment demands more effective drugs with few side effects. In the present study, we determined whether degalactotigonin (DGT) extracted from Solanum nigrum L. could exert antitumoral effects on RCC and examined the related molecular mechanisms. Methods The effects of DGT on RCC cells were assessed by cell counting kit-8 (CCK-8) assay, flow cytometry, invasion and migration assays and subcutaneous tumor xenograft experiments in nude mice. The related molecular mechanisms were delineated by RNA sequencing (RNA-seq), real-time polymerase chain reaction (PCR), western blotting, coimmunoprecipitation (co-IP) and plasmid transfection. Results DGT induced apoptosis and suppressed the proliferation, invasion, migration, and tumorigenicity of RCC cells. Mechanistically, yes-associated protein (YAP) signaling was inactivated, and the expression of YAP and its target genes was reduced in degalactotigonin-treated RCC cells. Additionally, DGT activated phosphorylated large tumor suppressor 1/2 (p-LATS1/2) to phosphorylate YAP, which increased YAP retention in the cytoplasm but decreased the amount of YAP that entered the nuclei of RCC cells. Moreover, DGT impaired the increased aggressive features of RCC cells induced by YAP overexpression. Conclusions DGT is an effective therapeutic agent, which facilitates the apoptosis and inhibits the proliferation, invasion, migration, and tumorigenicity of RCC cells in a YAP-dependent manner.
Collapse
Affiliation(s)
- Yuning Wang
- Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Tianyu Hong
- Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Linbao Chen
- Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Chuanmin Chu
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Jiangbo Zhu
- Tai Zhou the First People's Hospital (Wen Zhou Medical University Huangyan Hospital), Taizhou, China
| | - Jing Zhang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Chao Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China.,Department of Urology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jingcun Zheng
- Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Ning Jiang
- Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xingang Cui
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| |
Collapse
|
4
|
Guo Y, Xiao Z, Yang L, Gao Y, Zhu Q, Hu L, Huang D, Xu Q. Hypoxia‑inducible factors in hepatocellular carcinoma (Review). Oncol Rep 2019; 43:3-15. [PMID: 31746396 PMCID: PMC6908932 DOI: 10.3892/or.2019.7397] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Maintenance of an appropriate oxygen concentration is essential for the function of the liver. However, in many pathological conditions, and particularly in the tumor microenvironment, cells and tissues are frequently in a hypoxic state. In the presence of hypoxia, the cells adapt to the low oxygen levels through the hypoxia-inducible factor (HIF) pathway. Overgrowth of tumor cells restricts the diffusion of oxygen in tumors, leading to insufficient blood supply and the creation of a hypoxic microenvironment, and, as a consequence, activation of the expression of HIFs. HIFs possess a wide range of target genes, which function to control a variety of signaling pathways; thus, HIFs modulate cellular metabolism, immune escape, angiogenesis, metastasis, extracellular matrix remodeling, cancer stem cells and other properties of the tumor. Given their crucial role in the occurrence and development of tumors, HIFs are expected to become new targets of precise treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yang Guo
- Graduate Department, BengBu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Zunqiang Xiao
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Liu Yang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Yuling Gao
- Department of Genetics, Shaoxing Women and Children Hospital, Shaoxin, Zhejiang 312030, P.R. China
| | - Qiaojuan Zhu
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Linjun Hu
- Medical Department, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|