1
|
Pan Y, Wu M, Cai H. Role of ABCC5 in cancer drug resistance and its potential as a therapeutic target. Front Cell Dev Biol 2024; 12:1446418. [PMID: 39563862 PMCID: PMC11573773 DOI: 10.3389/fcell.2024.1446418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Over 90% of treatment failures in cancer therapy can be attributed to multidrug resistance (MDR), which can develop intracellularly or through various routes. Numerous pathways contribute to treatment resistance in cancer, but one of the most significant pathways is intracellular drug efflux and reduced drug concentrations within cells, which are controlled by overexpressed drug efflux pumps. As a member of the family of ABC transporter proteins, ABCC5 (ATP Binding Cassette Subfamily C Member 5) reduces the intracellular concentration of a drug and its subsequent effectiveness using an ATP-dependent method to pump the drug out of the cell. Numerous studies have demonstrated that ABCC5 is strongly linked to both poor prognosis and poor treatment response. In addition, elevated ABCC5 expression is noted in a wide variety of malignancies. Given that ABCC5 is regulated by several pathways in a broad range of cancer types, it is a prospective target for cancer treatment. This review examined the expression, structure, function, and role of ABCC5 in various cancer types.
Collapse
Affiliation(s)
- Yinlong Pan
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengmeng Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huazhong Cai
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Wang D, Zhou Y, Hua L, Hu M, Zhu N, Liu Y, Zhou Y. The role of the natural compound naringenin in AMPK-mitochondria modulation and colorectal cancer inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155786. [PMID: 38875812 DOI: 10.1016/j.phymed.2024.155786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Although AMP-activated protein kinase (AMPK) has been extensively studied in cellular processes, the understanding of its substrates, downstream functions, contributions to cell fate and colorectal cancer (CRC) progression remains incomplete. PURPOSE The aim of this study was to investigate the effects and mechanisms of naringenin on CRC. METHODS The biological and cellular properties of naringenin and its anticancer activity were evaluated in CRC. In addition, the effect of combined treatment with naringenin and 5-fluorouracil on tumor growth in vitro and in vivo was evaluated. RESULTS The present study found that naringenin inhibits the proliferation of CRC and promote its apoptosis. Compared with the naringenin group, naringenin combined with 5-fluorouracil had significant effect on inhibiting cell proliferation and promoting its apoptosis. It is showed that naringenin activates AMPK phosphorylation and mitochondrial fusion in CRC. Naringenin combined with 5-fluorouracil significantly reduces cardiotoxicity and liver damage induced by 5-fluorouracil in nude mice bearing subcutaneous CRC tumors, and attenuates colorectal injuries in azoxymethane/DSS dextran sulfate (AOM/DSS)-induced CRC. The combination of these two drugs alters mitochondrial function by increasing reactive oxygen species (ROS) levels and decreasing the mitochondrial membrane potential (MMP), thereby stimulating AMPK/mTOR signaling. Mitochondrial dynamics are thereby regulated by activating the AMPK/p-AMPK pathway, and mitochondrial homeostasis is coordinated through increased mitochondrial fusion and reduced fission to activate apoptosis in cancer cells. CONCLUSIONS Our data suggest that naringenin is important for inhibiting CRC proliferation, possibly through the AMPK pathway, to regulate mitochondrial function and induce apoptosis in CRC.
Collapse
Affiliation(s)
- Dan Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yue Zhou
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Li Hua
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Meichun Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Ni Zhu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yifei Liu
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| | - Yanhong Zhou
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| |
Collapse
|
3
|
Pettersen CHH, Samdal H, Sætrom P, Wibe A, Hermansen E, Schønberg SA. The Salmon Oil OmeGo Reduces Viability of Colorectal Cancer Cells and Potentiates the Anti-Cancer Effect of 5-FU. Mar Drugs 2023; 21:636. [PMID: 38132957 PMCID: PMC10744414 DOI: 10.3390/md21120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types worldwide. Chemotherapy is toxic to normal cells, and combinatory treatment with natural well-tolerated products is being explored. Some omega-3 polyunsaturated fatty acids (n-3 PUFAs) and marine fish oils have anti-cancer effects on CRC cells. The salmon oil OmeGo (Hofseth BioCare) contains a spectrum of fatty acids, including the n-3 PUFAs docosahexaenoic acid (DHA) and eicosahexaenoic acid (EPA). We explored a potential anti-cancer effect of OmeGo on the four CRC cell lines DLD-1, HCT-8, LS411N, and LS513, alone and in combination with the chemotherapeutic agent 5-Fluorouracil (5-FU). Screening indicated a time- and dose-dependent effect of OmeGo on the viability of the DLD-1 and LS513 CRC cell lines. Treatment with 5-FU and OmeGo (IC20-IC30) alone indicated a significant reduction in viability. A combinatory treatment with OmeGo and 5-FU resulted in a further reduction in viability in DLD-1 and LS513 cells. Treatment of CRC cells with DHA + EPA in a concentration corresponding to the content in OmeGo alone or combined with 5-FU significantly reduced viability of all four CRC cell lines tested. The lowest concentration of OmeGo reduced viability to a higher degree both alone and in combination with 5-FU compared to the corresponding concentrations of DHA + EPA in three of the cell lines. Results suggest that a combination of OmeGo and 5-FU could have a potential as an alternative anti-cancer therapy for patients with CRC.
Collapse
Affiliation(s)
- Caroline H. H. Pettersen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Surgery, St. Olav’s University Hospital, 7006 Trondheim, Norway
- Hofseth BioCare, Kipervikgata 13, 6003 Ålesund, Norway;
| | - Helle Samdal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Surgery, St. Olav’s University Hospital, 7006 Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Bioinformatics Core Facility—BioCore, Norwegian University of Science and Technology (NTNU), 7006 Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), 7006 Trondheim, Norway
| | - Arne Wibe
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
- Department of Surgery, St. Olav’s University Hospital, 7006 Trondheim, Norway
| | | | - Svanhild A. Schønberg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (H.S.); (P.S.); (A.W.); (S.A.S.)
| |
Collapse
|
4
|
Qin J, Ye L, Wen X, Zhang X, Di Y, Chen Z, Wang Z. Fatty acids in cancer chemoresistance. Cancer Lett 2023; 572:216352. [PMID: 37597652 DOI: 10.1016/j.canlet.2023.216352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Despite the remarkable clinical success of immunotherapy and molecular targeted therapy in patients with advanced tumors, chemotherapy remains the most commonly used treatment for most tumor patients. Chemotherapy drugs effectively inhibit tumor cell proliferation and survival through their remarkable mechanisms. However, tumor cells often develop severe intrinsic and acquired chemoresistance under chemotherapy stress, limiting the effectiveness of chemotherapy and leading to treatment failure. Growing evidence suggests that alterations in lipid metabolism may be implicated in the development of chemoresistance in tumors. Therefore, in this review, we provide a comprehensive overview of fatty acid metabolism and its impact on chemoresistance mechanisms. Additionally, we discuss the potential of targeting fatty acid metabolism as a therapeutic strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Guangxi, 530025, China.
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
5
|
Fray M, ELBini-Dhouib I, Hamzi I, Doghri R, Srairi-Abid N, Lesur D, Benazza M, Abidi R, Barhoumi-Slimi T. Synthesis, characterization and in vivo antitumor effect of new α,β-unsaturated-2,5-disubstituted-1,3,4-oxadiazoles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2053993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Fray
- Laboratory of Structural (bio)Organic Chemistry Department of Chemistry LR99ES14, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - I. ELBini-Dhouib
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis, Tunisia
| | - I. Hamzi
- Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, Tlemcen, Algeria
| | - R. Doghri
- Laboratory of Anatomo-Pathology, Institut Salah Azaiez, Tunis, Tunisia
| | - N. Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis, Tunisia
| | - D. Lesur
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, Amiens Cédex, France
| | - M. Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, Amiens Cédex, France
| | - R. Abidi
- Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) LR05ES09, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - T. Barhoumi-Slimi
- Laboratory of Structural (bio)Organic Chemistry Department of Chemistry LR99ES14, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- University of Carthage, High Institute of Environmental Sciences and Technologies, Technopark of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
6
|
Malekzadeh A, Zahedi P, Abdouss M. Synthesis and performance evaluation of 5-fluorouracil-loaded zwitterionic poly(4-vinylpyridine) nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj00121g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
After polymerizing 4-vinylpyridine, the obtained polymer was converted into zwitterionic nanoparticles containing 5-fluorouracil. Their potential for long-term blood circulation was investigated by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Ali Malekzadeh
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|