1
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Das D, M K, Mitra A, Zaky MY, Pathak S, Banerjee A. A Review on the Efficacy of Plant-derived Bio-active Compounds Curcumin and Aged Garlic Extract in Modulating Cancer and Age-related Diseases. Curr Rev Clin Exp Pharmacol 2024; 19:146-162. [PMID: 37150987 DOI: 10.2174/2772432819666230504093227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 05/09/2023]
Abstract
Aging is a process characterized by accumulating degenerative changes resulting in the death of an organism. Aging is mediated by various pathways that are directly linked to the individual's lifespan and are shunted for many age-related diseases. Many strategies for alleviating age-related diseases have been studied, which can target cells and molecules. Modern drugs such as Metformin, Rapamycin, and other drugs are used to reduce the effects of age-related diseases. Despite their beneficial activity, they possess some side effects which can limit their applications, mainly in older adults. Natural phytochemicals which have anti-aging activities have been studied by many researchers from a broader aspect and suggested that plant-based compounds can be a possible, direct, and practical way to treat age-related diseases which has enormous anti-aging activity. Also, studies indicated that the synergistic action of phytochemicals might enhance the biological effect rather than the individual or summative effects of natural compounds. Curcumin has an antioxidant property and is an effective scavenger of reactive oxygen species. Curcumin also has a beneficial role in many age-related diseases like diabetes, cardiovascular disease, neurological disorder, and cancer. Aged garlic extracts are also another bioactive component that has high antioxidant properties. Many studies demonstrated aged garlic extract, which has high antioxidant properties, could play a significant role in anti-aging and age-related diseases. The synergistic effect of these compounds can decrease the requirement of doses of a single drug, thus reducing its side effects caused by increased concentration of the single drug.
Collapse
Affiliation(s)
- Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Kanchan M
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Abhijit Mitra
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
3
|
Liu J, Zang Q, Li X, Tu X, Zhu Y, Wang L, Zhao Z, Song Y, Zhang R, Abliz Z. On-tissue chemical derivatization enables spatiotemporal heterogeneity visualization of oxylipins in esophageal cancer xenograft via ambient mass spectrometry imaging. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
4
|
Posadino AM, Erre GL, Cossu A, Emanueli C, Eid AH, Zinellu A, Pintus G, Giordo R. NADPH-derived ROS generation drives fibrosis and endothelial-to-mesenchymal transition in systemic sclerosis: Potential cross talk with circulating miRNAs. Biomol Concepts 2022; 13:11-24. [PMID: 35189048 DOI: 10.1515/bmc-2021-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is an immune disorder characterized by diffuse fibrosis and vascular abnormalities of the affected organs. Although the etiopathology of this disease is largely unknown, endothelial damage and oxidative stress appear implicated in its initiation and maintenance. Here, we show for the first time that circulating factors present in SSc sera increased reactive oxygen species (ROS) production, collagen synthesis, and proliferation of human pulmonary microvascular endothelial cells (HPMECs). The observed phenomena were also associated with endothelial to mesenchymal transition (EndMT) as indicated by decreased von Willebrand factor (vWF) expression and increased alpha-smooth muscle actin, respectively, an endothelial and mesenchymal marker. SSc-induced fibroproliferative effects were prevented by HPMECs exposition to the NADPH oxidase inhibitor diphenyleneiodonium, demonstrating ROS's causative role and suggesting their cellular origin. Sera from SSc patients showed significant changes in the expression of a set of fibrosis/EndMT-associated microRNAs (miRNA), including miR-21, miR-92a, miR-24, miR-27b, miR-125b, miR-29c, and miR-181b, which resulted significantly upregulated as compared to healthy donors sera. However, miR29b resulted downregulated in SSc sera, whereas no significant differences were found in the expression of miR-29a in the two experimental groups of samples. Taking together our data indicate NADPH oxidase-induced EndMT as a potential mechanism of SSc-associated fibrosis, suggesting fibrosis-associated miRNAs as potentially responsible for initiating and sustaining the vascular alterations observed in this pathological condition.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, 07100 Sassari, Italy
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London, W12 0NN England, United Kingdom
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University Health, Qatar University, Doha, 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University Health, Qatar University, Doha, 2713, Qatar
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates
| | - Roberta Giordo
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| |
Collapse
|