1
|
Rupert C, Aversana CD, Mosca L, Montanaro V, Arcaniolo D, De Sio M, Bilancio A, Altucci L, Palinski W, Pili R, de Nigris F. Therapeutic targeting of P2X4 receptor and mitochondrial metabolism in clear cell renal carcinoma models. J Exp Clin Cancer Res 2023; 42:134. [PMID: 37231503 DOI: 10.1186/s13046-023-02713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. Large-scale metabolomic data have associated metabolic alterations with the pathogenesis and progression of renal carcinoma and have correlated mitochondrial activity with poor survival in a subset of patients. The aim of this study was to determine whether targeting mitochondria-lysosome interaction could be a novel therapeutic approach using patient-derived organoids as avatar for drug response. METHODS RNAseq data analysis and immunohistochemistry were used to show overexpression of Purinergic receptor 4 (P2XR4) in clear cell carcinomas. Seahorse experiments, immunofluorescence and fluorescence cell sorting were used to demonstrate that P2XR4 regulates mitochondrial activity and the balance of radical oxygen species. Pharmacological inhibitors and genetic silencing promoted lysosomal damage, calcium overload in mitochondria and cell death via both necrosis and apoptosis. Finally, we established patient-derived organoids and murine xenograft models to investigate the antitumor effect of P2XR4 inhibition using imaging drug screening, viability assay and immunohistochemistry. RESULTS Our data suggest that oxo-phosphorylation is the main source of tumor-derived ATP in a subset of ccRCC cells expressing P2XR4, which exerts a critical impact on tumor energy metabolism and mitochondrial activity. Prolonged mitochondrial failure induced by pharmacological inhibition or P2XR4 silencing was associated with increased oxygen radical species, changes in mitochondrial permeability (i.e., opening of the transition pore complex, dissipation of membrane potential, and calcium overload). Interestingly, higher mitochondrial activity in patient derived organoids was associated with greater sensitivity to P2XR4 inhibition and tumor reduction in a xenograft model. CONCLUSION Overall, our results suggest that the perturbed balance between lysosomal integrity and mitochondrial activity induced by P2XR4 inhibition may represent a new therapeutic strategy for a subset of patients with renal carcinoma and that individualized organoids may be help to predict drug efficacy.
Collapse
Affiliation(s)
- Christofer Rupert
- Division of Hematology and Oncology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Carmela Dell' Aversana
- Institute of Experimental Endocrinology and Oncology, Gaetano Salvatore (IEOS)-CNR, Naples, Italy
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Laura Mosca
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | | | - Davide Arcaniolo
- Department of Women, Child, and General and Specialistic Surgery, University of Campania L. Vanvitelli, Naples, Italy
| | - Marco De Sio
- Department of Women, Child, and General and Specialistic Surgery, University of Campania L. Vanvitelli, Naples, Italy
| | - Antonio Bilancio
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Institute of Experimental Endocrinology and Oncology, Gaetano Salvatore (IEOS)-CNR, Naples, Italy
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
- BIOGEM, Ariano Irpino, Avellino, Italy
| | - Wulf Palinski
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roberto Pili
- Division of Hematology and Oncology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy.
| |
Collapse
|
2
|
Lin J, Tang Z, Zhang C, Dong W, Liu Y, Huang H, Liu H, Huang J, Lin T, Chen X. TFE3 gene rearrangement and protein expression contribute to a poor prognosis of renal cell carcinoma. Heliyon 2023; 9:e16076. [PMID: 37215783 PMCID: PMC10196445 DOI: 10.1016/j.heliyon.2023.e16076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Background TFE3-rearranged renal cell carcinoma (TFE3-rearranged RCC) is a type of kidney cancer with a low incidence, with no consensus about whether it has a worse prognosis than clear cell renal cell carcinoma (ccRCC). This study attempted to elucidate the impact of TFE3-rearranged RCC by analyzing its clinical features and prognosis. Methods Patients treated in Sun Yat-sen Memorial Hospital (SYSMH) who were suspected to be diagnosed with TFE3-rearranged RCC were divided into two groups, TFE3-rearranged RCC and ccRCC with positive TFE3 protein expression on immunohistochemistry [TFE3(+) ccRCC], by dual-color, break-apart fluorescence in situ hybridization (FISH). After balancing the baseline characteristics with TFE3(+) ccRCC using the propensity score matching (PSM) method in a ratio of 2, we selected patients diagnosed with ccRCC with negative TFE3 protein expression on immunohistochemistry [TFE3(-) ccRCC]. The impact of TFE3 gene rearrangement and protein expression on renal cell carcinoma was determined by feature comparison with a nonparametric test and survival analysis with the Kaplan‒Meier method. Results Among 37 patients suspected of having TFE3-rearranged RCC, 13 patients were diagnosed with TFE3-rearranged RCC, and 24 patients had TFE3(+) ccRCC. The recurrence and new metastasis of TFE3-rearranged RCC was relatively common, even if the tumor stage was early at the first diagnosis. Through feature comparison and survival analysis, we found that TFE3-rearranged RCC was quite similar to TFE3(+) ccRCC. Compared with TFE3(-) ccRCC, TFE3(+) ccRCC tended to have a larger tumor diameter (P = 0.011), higher neutrophil/lymphocyte ratio (NLR) (P = 0.017) and metastatic potential (P = 0.022), and worse overall survival (OS) (P = 0.043) and PFS (P = 0.016). The survival analysis showed that TFE3-rearranged RCC had a worse PFS than ccRCC (P = 0.002), and TFE3(+) RCC had a worse PFS than TFE3(-) RCC (P = 0.001). According to the stratification system based on the combination of TFE3 and lymphovascular invasion (LVI), we further found that the prognosis from good to poor was TFE3(-) LVI(-), TFE3(+) LVI(-), TFE3(+) LVI(+) and TFE3(-) LVI(+), with statistically significant differences in both OS (P = 0.001) and PFS (P < 0.001). In addition, we also reported two cases with poor prognosis, of which one was TFE3-rearranged RCC and the other was TFE3(+) ccRCC. Conclusions This is a novel finding that both FISH confirmed TFE3 gene rearrangement-mediated TFE3-rearranged RCC and IHC confirmed positive TFE3 protein expression [TFE3(+)] contribute to a poor prognosis in RCC, suggesting more active treatment and careful follow-up for TFE3(+) RCC patients. The combination of TFE3 and LVI may be a new risk stratification system for RCC.
Collapse
Affiliation(s)
- Junyi Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuang Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Chengjunyu Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, China
| | - Yeqing Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Hao Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Hao Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
3
|
Li X, Chen Y, Gong S, Chen H, Liu H, Li X, Hao J. Emerging roles of TFE3 in metabolic regulation. Cell Death Discov 2023; 9:93. [PMID: 36906611 PMCID: PMC10008649 DOI: 10.1038/s41420-023-01395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
TFE3 is a member of the MiT family of the bHLH-leucine zipper transcription factor. We previously focused on the role of TFE3 in autophagy and cancer. Recently, an increasing number of studies have revealed that TFE3 plays an important role in metabolic regulation. TFE3 participates in the metabolism of energy in the body by regulating pathways such as glucose and lipid metabolism, mitochondrial metabolism, and autophagy. This review summarizes and discusses the specific regulatory mechanisms of TFE3 in metabolism. We determined both the direct regulation of TFE3 on metabolically active cells, such as hepatocytes and skeletal muscle cells, and the indirect regulation of TFE3 through mitochondrial quality control and the autophagy-lysosome pathway. The role of TFE3 in tumor cell metabolism is also summarized in this review. Understanding the diverse roles of TFE3 in metabolic processes can provide new avenues for the treatment of some metabolism-related disorders.
Collapse
Affiliation(s)
- Xingyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
4
|
Dong X, Chen Y, Pan J, Ma W, Zhou P, Chen M, Guo H, Gan W. Clinicopathological features and prognosis of TFE3-positive renal cell carcinoma. Front Oncol 2022; 12:1017425. [PMID: 36276115 PMCID: PMC9582134 DOI: 10.3389/fonc.2022.1017425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background This study aimed to investigate the expression profile of TFE3 in renal cell carcinoma (RCC) and the clinicopathological features as well as prognosis of TFE3-positive RCC. Methods Tissue sections from 796 patients with RCC were collected for immunohistochemical staining of TFE3. Molecular TFE3 rearrangement tests were also carried out on the TFE3-positive RCCs using fluorescence in situ hybridization and RNA-sequencing assays. Both clinicopathological features and follow-up information were collected for further analysis. Results The present study showed that 91 patients with RCC (91/796, 11.4%) were TFE3 positive expression but only 31 (31/91, 34.1%) of the patients were diagnosed with Xp11.2 translocation RCC. Further, it was found that the patients with TFE3-positive RCCs were more likely to develop lymph node and distant metastasis at diagnosis as well as presented a significantly higher WHO/ISUP nuclear grade and AJCC stage as compared with patients with TFE3-negative RCCs (p<0.01). Results of univariate and multivariate analyses showed that TFE3 positive expression was an independent prognostic factor associated with poor progression-free survival. Further, the findings of survival analysis showed that patients with positive TFE3 expression showed a shorter progression-free survival as compared with the patients with negative expression of TFE3 (p<0.001). In addition, results of the survival analysis found that there was no significant difference in progression-free survival between the Xp11.2 translocation RCC and TFE3-positive non-Xp11.2 translocation RCC groups (p=0.9607). Conclusion This study found that nuclear TFE3 expression is not specific to the Xp11.2 translocation RCC. Moreover, the positive TFE3 expression is associated with tumor progression and poor prognosis in patients with RCC irrespective of the presence of TFE3 translocation.
Collapse
Affiliation(s)
- Xiang Dong
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxin Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Pan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Zhou
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ming Chen
- Department of Pathology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Weidong Gan,
| |
Collapse
|