1
|
Singh J, Khanduja KL, Dahiya D, Avti PK. Mechanistic Regulation of Epidermal Growth Factor and Hormonal Receptors by Kinase Inhibitors and Organofluorines in Breast Cancer Therapy. Cell Biochem Biophys 2024:10.1007/s12013-024-01546-9. [PMID: 39316263 DOI: 10.1007/s12013-024-01546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Differential expression patterns of growth factor (EGFR, HER-2) and hormonal (ER, PR) receptors in breast cancer (BC) remain crucial for evaluating and tailoring therapeutic interventions. This study investigates differential expression profiles of hormonal and growth factor receptors in BC patients and across age groups, major subclasses, disease stages and tumor histology and survival rates, the efficacy of emerging clinical trial drugs (Dabrafenib and Palbociclib) and elucidating their molecular interaction mechanisms for efficient therapeutic strategies. Gene and protein expression analysis in the normal vs BC and across age groups and major subclasses reveals divergent patterns as EGFR and HER-2 levels are reduced in tumors versus normal tissue, while ER and PR levels are higher, particularly in luminal subtypes. However, there was no significant difference in survival rates among high and low/medium expression levels of EGFR and PR receptors. Conversely, patients with high HER-2 and ER expression exhibited poorer survival rates compared to low or medium expression levels. The in vitro findings indicate that Dabrafenib exhibits greater effectiveness than Palbociclib in suppressing various BC cells such as MCF-7 (Luminal), MDA-MB-231 (Triple-Negative), SKBR-3 (HER-2 + ) proliferation, promoting cell death, (IC50 of Dab < Pal) at 24 and 48 h, ROS production, and reduced ER and PR, elevated HER-2 with no change in EGFR expression. Molecular simulation studies revealed Dabrafenib's thermodynamically stable interactions (ΔG), tighter binding, and less structural deviation in the order EGFR > HER-2 > ER > PR as compared to Palbociclib (HER-2 > ER > PR = EGFR). These results indicate that Dabrafenib, compared to Palbociclib, more effectively regulates breast cancer cell proliferation through specific interactions with hormonal and growth factor receptors towards a repurposing approach.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Krishan Lal Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of Surgery, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India.
| |
Collapse
|
2
|
Singh J, Khanduja KL, Avti PK. Unravelling benzazepines and aminopyrimidine as multi-target therapeutic repurposing drugs for EGFR V774M mutation in neuroglioma patients. BIOIMPACTS : BI 2023; 14:28876. [PMID: 38938756 PMCID: PMC11199933 DOI: 10.34172/bi.2023.28876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 06/29/2024]
Abstract
Introduction Neuroglioma, a classification encompassing tumors arising from glial cells, exhibits variable aggressiveness and depends on tumor grade and stage. Unraveling the EGFR gene alterations, including amplifications (unaltered), deletions, and missense mutations (altered), is emerging in glioma. However, the precise understanding of emerging EGFR mutations and their role in neuroglioma remains limited. This study aims to identify specific EGFR mutations prevalent in neuroglioma patients and investigate their potential as therapeutic targets using FDA-approved drugs for repurposing approach. Methods Neuroglioma patient's data were analyzed to identify the various mutations and survival rates. High throughput virtual screening (HTVS) of FDA-approved (1615) drugs using molecular docking and simulation was executed to determine the potential hits. Results Neuroglioma patient samples (n=4251) analysis reveals 19% EGFR alterations with most missense mutations at V774M in exon 19. The Kaplan-Meier plots show that the overall survival rate was higher in the unaltered group than in the altered group. Docking studies resulted the best hits based on each target's higher docking score, minimum free energy (MMGBSA), minimum kd, ki, and IC50 values. MD simulations and their trajectories show that compounds ZINC000011679756 target unaltered EGFR and ZINC000003978005 targets altered EGFR, whereas ZINC000012503187 (Conivaptan, Benzazepine) and ZINC000068153186 (Dabrafenib, aminopyrimidine) target both the EGFRs. The shortlisted compounds demonstrate favorable residual interactions with their respective targets, forming highly stable complexes. Moreover, these shortlisted compounds have drug- like properties as assessed by ADMET profiling. Conclusion Therefore, compounds (ZINC000012503187 and ZINC000068153186) can effectively target both the unaltered/altered EGFRs as multi-target therapeutic repurposing drugs towards neuroglioma.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India – 160012
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India – 160012
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India – 160012
| |
Collapse
|
3
|
Zhao J, Shi X, Wang Z, Xiong S, Lin Y, Wei X, Li Y, Tang X. Hepatotoxicity assessment investigations on PFASs targeting L-FABP using binding affinity data and machine learning-based QSAR model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115310. [PMID: 37523843 DOI: 10.1016/j.ecoenv.2023.115310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent organic pollutants that have been detected in various environmental media and human serum, but their safety assessment remains challenging. PFASs may accumulate in liver tissues and cause hepatotoxicity by binding to liver fatty acid binding protein (L-FABP). Therefore, evaluating the binding affinity of PFASs to L-FABP is crucial in assessing the potential hepatotoxic effects. In this study, two binding sites of L-FABP were evaluated, results suggested that the outer site possessed high affinity to polyfluoroalkyl sulfates and the inner site preferred perfluoroalkyl sulfonamides, overall, the inner site of L-FABP was more sensitive to PFASs. The binding affinity data of PFASs to L-FABP were used as training set to develop a machine learning model-based quantitative structure-activity relationship (QSAR) for efficient prediction of potentially hazardous PFASs. Further Bayesian Kernel Machine Regression (BKMR) model disclosed flexibility as the determinant molecular property on PFASs-induced hepatotoxicity. It can influence affinity of PFASs to target protein through affecting binding conformations directly (individual effect) as well as integrating with other molecular properties (joint effect). Our present work provided more understanding on hepatotoxicity of PFASs, which could be significative in hepatotoxicity gradation, administration guidance, and safer alternatives development of PFASs.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China; Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoyue Shi
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhiqin Wang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Sijie Xiong
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiaowen Tang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Avti PK, Singh J, Dahiya D, Khanduja KL. Dual functionality of pyrimidine and flavone in targeting genomic variants of EGFR and ER receptors to influence the differential survival rates in breast cancer patients. Integr Biol (Camb) 2023; 15:zyad014. [PMID: 38084900 DOI: 10.1093/intbio/zyad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/01/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023]
Abstract
Breast cancer ranks as one of the most prevalent forms of cancer and stands as the primary global cause of mortality among women. Overexpression of EGFR and ER receptors or their genomic alterations leads to malignant transformation, disease aggression and is linked to poor patient survival outcomes. The clinical breast cancer patient's genomic expression, survival analysis, and computational drug-targeting approaches were used to identify best-hit phytochemicals for therapeutic purposes. Breast cancer patients have genomic alterations in EGFR (4%, n = 5699) and ER (9%, n = 8461), with the highest proportion being missense mutations. No statistically significant difference was observed in the patient survival rates between the altered and unaltered ER groups, unlike EGFR, with the lowest survival rates in the altered group. Computational screening of natural compound libraries (7711) against each EGFR (3POZ) and ER (3ERT) receptor shortlists the best-hit 3 compounds with minimum docking score (ΔG = -7.9 to -10.8), MMGBSA (-40.16 to -51.91 kcal/mol), strong intermolecular H-bonding, drug-like properties with least kd, and ki. MD simulation studies display stable RMSD, RMSF, and good residual correlation of best-hit common compounds (PubChem ID: 5281672 and 5280863) targeting both EGFR and ER receptors. In vitro, studies revealed that these common drugs exhibited a high anti-proliferative effect on MCF-7 and MDA-MB-231 breast cancer cells, with effective IC50 values (15-40 μM) and lower free energy, kd, and ki (5281672 > 5280863 > 5330286) much affecting HEK-293 non-cancerous cells, indicating the safety profile. The experimental and computational correlation studies suggest that the highly expressed EGFR and ER receptors in breast cancer patients having poor survival rates can be effectively targeted with best-hit common potent drugs with a multi-target therapeutic approach. Insight Box: The findings of this study provide valuable insights into the genomic/proteomic data, breast cancer patient's survival analysis, and EGFR and ER receptor variants structural analysis. The genetic alterations analysis of EGFR and ER/ESR1 in breast cancer patients reveals the high frequency of mutation types, which affect patient's survival rate and targeted therapies. The common best-hit compounds affect the cell survival patterns with effective IC50, drug-like properties having lower equilibrium and dissociation constants demonstrating the anti-proliferative effects. This work integrates altered receptor structural analysis, molecular interaction-based simulations, and ADMET properties to illuminate the identified best hits phytochemicals potential efficacy targeting both EGFR and ER receptors, demonstrating a multi-target therapeutic approach.
Collapse
Affiliation(s)
- Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
5
|
Singh J, Sangwan N, Chauhan A, Avti PK. Integrative Expression, Survival Analysis and Cellular miR-2909 Molecular Interplay in MRN Complex Check Point Sensor Genes (MRN-CSG) Involved in Breast Cancer. Clin Breast Cancer 2022; 22:e850-e862. [PMID: 36220723 DOI: 10.1016/j.clbc.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Breast cancer, an emerging global challenge, is evidenced by recent studies of miRNAs involvement in DNA repair gene variants (MRE11, RAD50, and NBN as checkpoint sensor genes (CSG) - MRN-CSG). The identification of various mutations in MRN-CSG and their interactions with miRNAs is still not understood. The emerging studies of miR-2909 involvement in other cancers led us to explore its role as molecular mechanistic marker in breast cancer. MATERIALS AND METHODS The genomic and proteomic data of MRN-CSG of breast cancer patients (8426 samples) was evaluated to identify the mutation types linked with the patient's survival rate. Additionally, molecular, 3D-structural and functional analysis was performed to identify miR-2909 as regulator of MRN-CSG. RESULTS The genomic and proteomic data analysis shows genetic alterations with majority of missense mutations [RAD50 (0.7%), MRE11 (1.5%), and NBN (11%)], though with highest MRE11 mRNA expression in invasive ductal breast carcinoma as compared to other breast cancer types. The Kaplan-Meier survival curves suggest higher survival rate for unaltered groups as compared to the altered group. Network analysis and disease association of miR-2909 and MRN-CSG shows strong interactions with other partners. The molecular hybridization between miR-2909-RAD50 and miR-2909-MRE11 complexes showed thermodynamically stable structures. Further, argonaute protein, involved in RNA silencing, docking studies with miR-MRE11-mRNA and miR-RAD50-mRNA hybridized complexes showed strong binding affinity. CONCLUSION The results suggest that miR-2909 forms strong thermodynamically stable molecular hybridized complexes with MRE11 and RAD50 mRNAs which further strongly interacts with argonaute protein to show potential molecular mechanistic role in breast cancer.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India, 160012
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India, 160012
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India, 160012
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India, 160012.
| |
Collapse
|
6
|
Singh J, Sangwan N, Chauhan A, Avti PK. Integrative network and computational simulation of clinical and genomic data for the identification of mutated EGFR in breast cancer patients for therapeutic targeting using purine analogues. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pramod K. Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
7
|
Vietri MT, D’Elia G, Caliendo G, Albanese L, Signoriello G, Napoli C, Molinari AM. Pancreatic Cancer with Mutation in BRCA1/2, MLH1, and APC Genes: Phenotype Correlation and Detection of a Novel Germline BRCA2 Mutation. Genes (Basel) 2022; 13:321. [PMID: 35205366 PMCID: PMC8872383 DOI: 10.3390/genes13020321] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading cause of cancer death worldwide; most of cases are sporadic, however about 5% to 10% report a hereditary predisposition. Several hereditary syndromes have been associated with familial pancreatic cancer (FPC) onset, including hereditary breast and ovarian cancer syndrome (HBOC), Lynch syndrome (LS), Familial atypical multiple mole melanoma (FAMMM), Familial adenomatous polyposis (FAP), Li-Fraumeni syndrome (LFS), Peutz-Jeghers syndrome (PJS), and Hereditary pancreatitis (HP).The aim of this study was to determine the mutational status of a cohort of 56 HBOC families, 7 LS families, 3 FAP and FAMMM families, and 1 LFS family with at least one case of PDAC. Mutation analysis of BRCA1/2, ATM, CHEK2, PALB2, RAD51C, RAD51D, NBN, CDH1, TP53, MLH1, MSH2, MSH6, and PMS2 genes, showedmutation in BRCA1/2, MLH1, and APC genes. We founda high mutation rate in patients belong HBOC and LS families, with a percentage of 28.6% in both syndromes and prevalence in HBOC of BRCA2 mutations with one case of double mutation in BRCA2 gene. In FAP family, we found a pathogenic mutation in APC gene in 1/3 families. We observed an early onset of PDAC and a lower survival in PDAC patients belonging to mutated families, while no evidence of possible pancreatic cancer cluster regions was found. Moreover, we identified a novel BRCA2 germline mutation, c.5511delT (p.Phe1837LeufsX3), not reported in any database, that segregated with disease in HBOC patients. Mutational analysis was extended to family membersof mutated patients, both healthy and cancer affected, which revealed 23 unaffected family members that inherited the proband's mutation. Although correlative by its nature, the presence of a BRCA mutation in PDAC patients may have benefits in terms of optimized treatment and longer outcome.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Giovanna D’Elia
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Gemma Caliendo
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Luisa Albanese
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Giuseppe Signoriello
- Statistical Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Clinical Department of Internal Medicine and Specialistic Units, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Anna Maria Molinari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| |
Collapse
|