1
|
Wang Y, Ma L, He J, Gu H, Zhu H. Identification of cancer stem cell-related genes through single cells and machine learning for predicting prostate cancer prognosis and immunotherapy. Front Immunol 2024; 15:1464698. [PMID: 39267762 PMCID: PMC11390519 DOI: 10.3389/fimmu.2024.1464698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background Cancer stem cells (CSCs) are a subset of cells within tumors that possess the unique ability to self-renew and give rise to diverse tumor cells. These cells are crucial in driving tumor metastasis, recurrence, and resistance to treatment. The objective of this study was to pinpoint the essential regulatory genes associated with CSCs in prostate adenocarcinoma (PRAD) and assess their potential significance in the diagnosis, prognosis, and immunotherapy of patients with PRAD. Method The study utilized single-cell analysis techniques to identify stem cell-related genes and evaluate their significance in relation to patient prognosis and immunotherapy in PRAD through cluster analysis. By utilizing diverse datasets and employing various machine learning methods for clustering, diagnostic models for PRAD were developed and validated. The random forest algorithm pinpointed HSPE1 as the most crucial prognostic gene among the stem cell-related genes. Furthermore, the study delved into the association between HSPE1 and immune infiltration, and employed molecular docking to investigate the relationship between HSPE1 and its associated compounds. Immunofluorescence staining analysis of 60 PRAD tissue samples confirmed the expression of HSPE1 and its correlation with patient prognosis in PRAD. Result This study identified 15 crucial stem cell-related genes through single-cell analysis, highlighting their importance in diagnosing, prognosticating, and potentially treating PRAD patients. HSPE1 was specifically linked to PRAD prognosis and response to immunotherapy, with experimental data supporting its upregulation in PRAD and association with poorer prognosis. Conclusion Overall, our findings underscore the significant role of stem cell-related genes in PRAD and unveil HSPE1 as a novel target related to stem cell.
Collapse
Affiliation(s)
- YaXuan Wang
- Cancer Research Centre Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Ma
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University (The Third Hospital of Wuhan), Wuhan, China
| | - Jiaxin He
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HaiJuan Gu
- Cancer Research Centre Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - HaiXia Zhu
- Cancer Research Centre Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Joe A, Manivasagan P, Park JK, Han HW, Seo SH, Thambi T, Giang Phan VH, Kang SA, Conde J, Jang ES. Electric Field-Responsive Gold Nanoantennas for the Induction of a Locoregional Tumor pH Change Using Electrolytic Ablation Therapy. ACS NANO 2024; 18. [PMID: 38975706 PMCID: PMC11295197 DOI: 10.1021/acsnano.4c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Electrolytic ablation (EA) is a burgeoning treatment for solid tumors, in which electrical energy catalyzes a chemical reaction to generate reactive species that can eradicate cancer cells. However, the application of this technique has been constrained owing to the limited spatial effectiveness and complexity of the electrode designs. Therefore, the incorporation of nanotechnology into EA is anticipated to be a significant improvement. Herein, we present a therapeutic approach based on difructose dianhydride IV-conjugated polyethylenimine-polyethylene glycol-modified gold nanorods as electric nanoantennas and nanoelectrocatalysts for EA. We demonstrate that square-wave direct current (DC) fields trigger a reaction between water molecules and chloride ions on the gold nanorod surface, generating electrolytic products including hydrogen, oxygen, and chlorine gases near the electrodes, changing the pH, and inducing cell death. These electric nanoantennas showed significant efficacy in treating colorectal cancer both in vitro and in vivo after DC treatment. These findings clearly indicate that gold nanoantennas enhance the effectiveness of EA by creating a localized electric field and catalyzing electrolytic reactions for the induction of locoregional pH changes within the tumor. By overcoming the limitations of traditional EA and offering an enhanced level of tumor specificity and control, this nanotechnology-integrated approach advances further innovations in cancer therapies.
Collapse
Affiliation(s)
- Ara Joe
- Department
of Applied Chemistry, Kumoh National Institute
of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic
of Korea
| | - Panchanathan Manivasagan
- Department
of Applied Chemistry, Kumoh National Institute
of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic
of Korea
| | - Jong Kook Park
- Department
of Convergence Technology, Graduate School of Venture, Hoseo University, Seoul 06724, Republic of Korea
| | - Hyo-Won Han
- Department
of Applied Chemistry, Kumoh National Institute
of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic
of Korea
| | - Sun-Hwa Seo
- Department
of Applied Chemistry, Kumoh National Institute
of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic
of Korea
| | - Thavasyappan Thambi
- Graduate
School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Vu Hoang Giang Phan
- Biomaterials
and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam
| | - Soon Ah Kang
- Department
of Convergence Technology, Graduate School of Venture, Hoseo University, Seoul 06724, Republic of Korea
| | - João Conde
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade NOVA de Lisboa, Lisboa 1169-056, Portugal
| | - Eue-Soon Jang
- Department
of Applied Chemistry, Kumoh National Institute
of Technology, Daehak-ro 61, Gumi, Gyeongbuk 39177, Republic
of Korea
| |
Collapse
|
3
|
Mattes MD, Koturbash I, Leung CN, Wen S, Jacobson GM. A Phase I Trial of a Methionine Restricted Diet with Concurrent Radiation Therapy. Nutr Cancer 2024; 76:463-468. [PMID: 38591931 PMCID: PMC11407292 DOI: 10.1080/01635581.2024.2340784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Methionine is an essential amino acid critical for cell growth and survival. Preclinical evidence suggests a methionine restricted diet (MRD) sensitizes cancer to radiation therapy (RT), without significant adverse effects. However, this has never been evaluated in humans. The purpose of this pilot study was to evaluate the safety and feasibility of concurrent MRD with standard-of-care definitive RT in adults with any non-skin cancer malignancy. The MRD extended from 2 wk before RT initiation, through 2 wk beyond RT completion. The primary endpoint of safety was assessed as rate of grade 3 or higher acute and late toxicities. Feasibility was assessed with quantitative plasma amino acid panel every 2 wk during the MRD (target plasma methionine 13 μM). Nine patients were accrued over a two-year period, with five able to complete the treatment course. The trial was closed due to slow accrual and subjects' difficulty maintaining the diet. No grade 3 or higher adverse events were observed. Subjects' average methionine level was 18.8 μM during treatment, with average nadir 16.8 μM. These findings suggest the safety of concurrent MRD with RT, with toxicities comparable to those expected with RT alone. However, the diet was challenging, and unacceptable to most patients.
Collapse
Affiliation(s)
- Malcolm D. Mattes
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas Medical Sciences, Little Rock, Arkansas, USA
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Calvin N. Leung
- New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Sijin Wen
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, Morgantown, West Virginia, USA
| | | |
Collapse
|
4
|
Wu H, Ma W, Wang Y, Wang Y, Sun X, Zheng Q. Gut microbiome-metabolites axis: A friend or foe to colorectal cancer progression. Biomed Pharmacother 2024; 173:116410. [PMID: 38460373 DOI: 10.1016/j.biopha.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
An expanding corpus of research robustly substantiates the complex interrelation between gut microbiota and the onset, progression, and metastasis of colorectal cancer. Investigations in both animal models and human subjects have consistently underscored the role of gut bacteria in a variety of metabolic activities, driven by dietary intake. These activities include amino acid metabolism, carbohydrate fermentation, and the generation and regulation of bile acids. These metabolic derivatives, in turn, have been identified as significant contributors to the progression of colorectal cancer. This thorough review meticulously explores the dynamic interaction between gut bacteria and metabolites derived from the breakdown of amino acids, fatty acid metabolism, and bile acid synthesis. Notably, bile acids have been recognized for their potential carcinogenic properties, which may expedite tumor development. Extensive research has revealed a reciprocal influence of gut microbiota on the intricate spectrum of colorectal cancer pathologies. Furthermore, strategies to modulate gut microbiota, such as dietary modifications or probiotic supplementation, may offer promising avenues for both the prevention and adjunctive treatment of colorectal cancer. Nevertheless, additional research is imperative to corroborate these findings and enhance our comprehension of the underlying mechanisms in colorectal cancer development.
Collapse
Affiliation(s)
- Hao Wu
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Wenmeng Ma
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yiyao Wang
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yuanyuan Wang
- Department of anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, PR China
| | - Xun Sun
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| | - Qianqian Zheng
- Department of Pathophysiology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
5
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
6
|
Yao Y, Shi L, Zhu X. Four differentially expressed exosomal miRNAs as prognostic biomarkers and therapy targets in endometrial cancer: Bioinformatic analysis. Medicine (Baltimore) 2023; 102:e34998. [PMID: 37653757 PMCID: PMC10470766 DOI: 10.1097/md.0000000000034998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. Accumulated evidence has demonstrated exosomes of cancer cells carry microRNAs (miRNAs) to nonmalignant cells to induce metastasis. Our study aimed to find possible biomarkers of EC. Data for miRNA expression related with exosome from EC patients were downloaded from The Cancer Genome Atlas database, and the miRNA expression profiles associated with exosomes of EC were downloaded from the National Center for Biotechnology Information. We used different algorithms to analyze the differential miRNA expression, infer the relative proportion of immune infiltrating cells, predict chemotherapy sensitivity, and comprehensively score each gene set to evaluate the potential biological function changes of different samples. The gene ontology analysis and Kyoto encyclopedia of genome genomics pathway analysis were performed for specific genes. A total of 13 differential miRNAs were identified, of which 4 were up-regulated. The 4 miRNAs, that is hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d, were the hub exosomal miRNAs that were all closely related to the clinic phenotypes and prognosis of patients. This study preliminarily indicates that the 4 hub exosomal miRNAs (hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d) could be used as prognostic biomarkers or therapy targets in EC. Further studies are required to make sure of their real feasibility and values in the EC clinic and the relative research.
Collapse
Affiliation(s)
- Yingsha Yao
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Liujing Shi
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoming Zhu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
7
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
8
|
Jiménez-Alonso JJ, Guillén-Mancina E, Calderón-Montaño JM, Jiménez-González V, Díaz-Ortega P, Burgos-Morón E, López-Lázaro M. Artificial Diets with Altered Levels of Sulfur Amino Acids Induce Anticancer Activity in Mice with Metastatic Colon Cancer, Ovarian Cancer and Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24054587. [PMID: 36902018 PMCID: PMC10003419 DOI: 10.3390/ijms24054587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Sulfur-containing amino acids methionine (Met), cysteine (Cys) and taurine (Tau) are common dietary constituents with important cellular roles. Met restriction is already known to exert in vivo anticancer activity. However, since Met is a precursor of Cys and Cys produces Tau, the role of Cys and Tau in the anticancer activity of Met-restricted diets is poorly understood. In this work, we screened the in vivo anticancer activity of several Met-deficient artificial diets supplemented with Cys, Tau or both. Diet B1 (6% casein, 2.5% leucine, 0.2% Cys and 1% lipids) and diet B2B (6% casein, 5% glutamine, 2.5% leucine, 0.2% Tau and 1% lipids) showed the highest activity and were selected for further studies. Both diets induced marked anticancer activity in two animal models of metastatic colon cancer, which were established by injecting CT26.WT murine colon cancer cells in the tail vein or peritoneum of immunocompetent BALB/cAnNRj mice. Diets B1 and B2B also increased survival of mice with disseminated ovarian cancer (intraperitoneal ID8 Tp53-/- cells in C57BL/6JRj mice) and renal cell carcinoma (intraperitoneal Renca cells in BALB/cAnNRj mice). The high activity of diet B1 in mice with metastatic colon cancer may be useful in colon cancer therapy.
Collapse
|
9
|
Stemness of Normal and Cancer Cells: The Influence of Methionine Needs and SIRT1/PGC-1α/PPAR-α Players. Cells 2022; 11:cells11223607. [PMID: 36429035 PMCID: PMC9688847 DOI: 10.3390/cells11223607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells are a population of undifferentiated cells with self-renewal and differentiation capacities. Normal and cancer stem cells share similar characteristics in relation to their stemness properties. One-carbon metabolism (OCM), a network of interconnected reactions, plays an important role in this dependence through its role in the endogenous synthesis of methionine and S-adenosylmethionine (SAM), the universal donor of methyl groups in eukaryotic cells. OCM genes are differentially expressed in stem cells, compared to their differentiated counterparts. Furthermore, cultivating stem cells in methionine-restricted conditions hinders their stemness capacities through decreased SAM levels with a subsequent decrease in histone methylation, notably H3K4me3, with a decrease in stem cell markers. Stem cells' reliance on methionine is linked to several mechanisms, including high methionine flux or low endogenous methionine biosynthesis. In this review, we provide an overview of the recent discoveries concerning this metabolic dependence and we discuss the mechanisms behind them. We highlight the influence of SIRT1 on SAM synthesis and suggest a role of PGC-1α/PPAR-α in impaired stemness produced by methionine deprivation. In addition, we discuss the potential interest of methionine restriction in regenerative medicine and cancer treatment.
Collapse
|