1
|
Albrecht J, Czuczwar SJ, Zielińska M, Miziak B. Methionine Sulfoximine as a Tool for Studying Temporal Lobe Epilepsy: Initiator, Developer, Attenuator. Neurochem Res 2025; 50:84. [PMID: 39843842 DOI: 10.1007/s11064-024-04329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures. Recently, a temporal lobe epilepsy (TLE) model based on local continuous infusion of MSO into the hippocampus has been developed reproducing the main features of human mesial TLE: induction of focal seizures, their spreading, increase in intensity over time, and development of spontaneous recurrent seizures. Fully developed TLE in this model is associated with hippocampal degeneration, hallmarked by reactive astrogliosis, and causally related to the concomitant loss of GS-containing astrocytes. By contrast, short-term pre-exposure of rats to relatively low MSO doses that only moderately inhibited GS, attenuated and delayed the initial seizures in the lithium-pilocarpine model of TLE and in other seizure-associated contexts: in the pentylenetetrazole kindling model in rat, and in spontaneously firing or electrically stimulated brain slices. The anti-initial seizure activity of MSO may partly bypass inhibition of GS: the postulated mechanisms include: (i) decreased release of excitatory neurotransmitter Glu, (ii) prevention or diminution of seizure-associated brain edema, (iii) stimulation of glycogenesis, an energy-sparing process; (iv) central or peripheral hypothermia. Further work is needed to verify either of the above mechanisms.
Collapse
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland
| |
Collapse
|
2
|
Kleidonas D, Hilfiger L, Lenz M, Häussinger D, Vlachos A. Ammonium chloride reduces excitatory synaptic transmission onto CA1 pyramidal neurons of mouse organotypic slice cultures. Front Cell Neurosci 2024; 18:1410275. [PMID: 39411004 PMCID: PMC11473415 DOI: 10.3389/fncel.2024.1410275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Acute liver dysfunction commonly leads to rapid increases in ammonia concentrations in both the serum and the cerebrospinal fluid. These elevations primarily affect brain astrocytes, causing modifications in their structure and function. However, its impact on neurons is not yet fully understood. In this study, we investigated the impact of elevated ammonium chloride levels (NH4Cl, 5 mM) on synaptic transmission onto CA1 pyramidal neurons in mouse organotypic entorhino-hippocampal tissue cultures. We found that acute exposure to NH4Cl reversibly reduced excitatory synaptic transmission and affected CA3-CA1 synapses. Notably, NH4Cl modified astrocytic, but not CA1 pyramidal neuron, passive intrinsic properties. To further explore the role of astrocytes in NH4Cl-induced attenuation of synaptic transmission, we used methionine sulfoximine to target glutamine synthetase, a key astrocytic enzyme for ammonia clearance in the central nervous system. Inhibition of glutamine synthetase effectively prevented the downregulation of excitatory synaptic activity, underscoring the significant role of astrocytes in adjusting excitatory synapses during acute ammonia elevation.
Collapse
Affiliation(s)
- Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Louis Hilfiger
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Jones AG, Aquilino M, Tinker RJ, Duncan L, Jenkins Z, Carvill GL, DeWard SJ, Grange DK, Hajianpour MJ, Halliday BJ, Holder-Espinasse M, Horvath J, Maitz S, Nigro V, Morleo M, Paul V, Spencer C, Esterhuizen AI, Polster T, Spano A, Gómez-Lozano I, Kumar A, Poke G, Phillips JA, Underhill HR, Gimenez G, Namba T, Robertson SP. Clustered de novo start-loss variants in GLUL result in a developmental and epileptic encephalopathy via stabilization of glutamine synthetase. Am J Hum Genet 2024; 111:729-741. [PMID: 38579670 PMCID: PMC11023914 DOI: 10.1016/j.ajhg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.
Collapse
Affiliation(s)
- Amy G Jones
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Matilde Aquilino
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Rory J Tinker
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura Duncan
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Zandra Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gemma L Carvill
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | - Benjamin J Halliday
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | - Silvia Maitz
- Medical Genetics Service, Oncology Department of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Manuela Morleo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Careni Spencer
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Medicine, Division of Human Genetics, Groote Schuur Hospital, Cape Town, South Africa
| | - Alina I Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa; National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Tilman Polster
- Department of Epileptology (Krankenhaus Mara, Bethel Epilepsy Center) Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Alice Spano
- Maggiore Della Carità Hospital, Novara, Italy
| | - Inés Gómez-Lozano
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Abhishek Kumar
- Centre for Protein Research, University of Otago, Dunedin, New Zealand
| | - Gemma Poke
- Genetics Health Service New Zealand, Wellington Hospital, Wellington, New Zealand
| | | | | | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
Ghosh S, Kundu R, Chandana M, Das R, Anand A, Beura S, Bobde RC, Jain V, Prabhu SR, Behera PK, Mohanty AK, Chakrapani M, Satyamoorthy K, Suryawanshi AR, Dixit A, Padmanaban G, Nagaraj VA. Distinct evolution of type I glutamine synthetase in Plasmodium and its species-specific requirement. Nat Commun 2023; 14:4216. [PMID: 37452051 PMCID: PMC10349072 DOI: 10.1038/s41467-023-39670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Malaria parasite lacks canonical pathways for amino acid biosynthesis and depends primarily on hemoglobin degradation and extracellular resources for amino acids. Interestingly, a putative gene for glutamine synthetase (GS) is retained despite glutamine being an abundant amino acid in human and mosquito hosts. Here we show Plasmodium GS has evolved as a unique type I enzyme with distinct structural and regulatory properties to adapt to the asexual niche. Methionine sulfoximine (MSO) and phosphinothricin (PPT) inhibit parasite GS activity. GS is localized to the parasite cytosol and abundantly expressed in all the life cycle stages. Parasite GS displays species-specific requirement in Plasmodium falciparum (Pf) having asparagine-rich proteome. Targeting PfGS affects asparagine levels and inhibits protein synthesis through eIF2α phosphorylation leading to parasite death. Exposure of artemisinin-resistant Pf parasites to MSO and PPT inhibits the emergence of viable parasites upon artemisinin treatment.
Collapse
Affiliation(s)
- Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Rajib Kundu
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Subhashree Beura
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Ruchir Chandrakant Bobde
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Vishal Jain
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Sowmya Ramakant Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Akshaya Kumar Mohanty
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Ispat General Hospital, Sector 19, Rourkela, 769005, Odisha, India
| | - Mahabala Chakrapani
- Department of Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Anshuman Dixit
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Govindarajan Padmanaban
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
5
|
Neuroinflammation, Energy and Sphingolipid Metabolism Biomarkers Are Revealed by Metabolic Modeling of Autistic Brains. Biomedicines 2023; 11:biomedicines11020583. [PMID: 36831124 PMCID: PMC9953696 DOI: 10.3390/biomedicines11020583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders generally characterized by repetitive behaviors and difficulties in communication and social behavior. Despite its heterogeneous nature, several metabolic dysregulations are prevalent in individuals with ASD. This work aims to understand ASD brain metabolism by constructing an ASD-specific prefrontal cortex genome-scale metabolic model (GEM) using transcriptomics data to decipher novel neuroinflammatory biomarkers. The healthy and ASD-specific models are compared via uniform sampling to identify ASD-exclusive metabolic features. Noticeably, the results of our simulations and those found in the literature are comparable, supporting the accuracy of our reconstructed ASD model. We identified that several oxidative stress, mitochondrial dysfunction, and inflammatory markers are elevated in ASD. While oxidative phosphorylation fluxes were similar for healthy and ASD-specific models, and the fluxes through the pathway were nearly undisturbed, the tricarboxylic acid (TCA) fluxes indicated disruptions in the pathway. Similarly, the secretions of mitochondrial dysfunction markers such as pyruvate are found to be higher, as well as the activities of oxidative stress marker enzymes like alanine and aspartate aminotransferases (ALT and AST) and glutathione-disulfide reductase (GSR). We also detected abnormalities in the sphingolipid metabolism, which has been implicated in many inflammatory and immune processes, but its relationship with ASD has not been thoroughly explored in the existing literature. We suggest that important sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), ceramide, and glucosylceramide, may be promising biomarkers for the diagnosis of ASD and provide an opportunity for the adoption of early intervention for young children.
Collapse
|
6
|
Mao X, Chen H, Lin AZ, Kim S, Burczynski ME, Na E, Halasz G, Sleeman MW, Murphy AJ, Okamoto H, Cheng X. Glutaminase 2 knockdown reduces hyperammonemia and associated lethality of urea cycle disorder mouse model. J Inherit Metab Dis 2022; 45:470-480. [PMID: 34988999 PMCID: PMC9302672 DOI: 10.1002/jimd.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/12/2022]
Abstract
Amino acids, the building blocks of proteins in the cells and tissues, are of fundamental importance for cell survival, maintenance, and proliferation. The liver plays a critical role in amino acid metabolism and detoxication of byproducts such as ammonia. Urea cycle disorders with hyperammonemia remain difficult to treat and eventually necessitate liver transplantation. In this study, ornithine transcarbamylase deficient (Otcspf-ash ) mouse model was used to test whether knockdown of a key glutamine metabolism enzyme glutaminase 2 (GLS2, gene name: Gls2) or glutamate dehydrogenase 1 (GLUD1, gene name: Glud1) could rescue the hyperammonemia and associated lethality induced by a high protein diet. We found that reduced hepatic expression of Gls2 but not Glud1 by AAV8-mediated delivery of a short hairpin RNA in Otcspf-ash mice diminished hyperammonemia and reduced lethality. Knockdown of Gls2 but not Glud1 in Otcspf-ash mice exhibited reduced body weight loss and increased plasma glutamine concentration. These data suggest that Gls2 hepatic knockdown could potentially help alleviate risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle.
Collapse
Affiliation(s)
- Xia Mao
- Regeneron PharmaceuticalsTarrytownNew YorkUSA
| | - Helen Chen
- Regeneron PharmaceuticalsTarrytownNew YorkUSA
| | | | - Sun Kim
- Regeneron PharmaceuticalsTarrytownNew YorkUSA
| | | | - Erqian Na
- Regeneron PharmaceuticalsTarrytownNew YorkUSA
| | | | | | | | | | | |
Collapse
|
7
|
Saul Brusilow: Understanding and treating diseases of ammonia toxicity. Anal Biochem 2022; 636:114478. [PMID: 34808107 DOI: 10.1016/j.ab.2021.114478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/05/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023]
Abstract
This article reviews the scientific career and accomplishments of the late Dr. Saul Brusilow, Professor of Pediatrics at Johns Hopkins. Dr. Brusilow's career was focused on diseases involving hyperammonemia. He and his colleagues developed a set of drugs that could lower ammonia levels in patients with genetic disorders of the urea cycle by providing alternative pathways for the synthesis of excretable nitrogenous molecules. Those drugs and their derivatives represent one of the earliest and most successful drug therapies for genetic diseases. Turning their attention to brain swelling caused by liver disease, Dr. Brusilow and colleagues developed the Osmotic Gliopathy Hypothesis to help explain the mechanism of ammonia toxicity, postulating that high ammonia drives glutamine synthetase in astrocytes to produce elevated levels of glutamine that act as a potent osmolyte, drawing water into the cell and causing cerebral edema. This hypothesis suggests that inhibiting glutamine synthetase with its well-characterized inhibitor, methionine sulfoximine, might prove therapeutic in cases of hepatic encephalopathy, a conclusion supported by their subsequent studies in animals. But although the drugs developed to treat hyperammonemia resulting from urea cycle disorders were successfully developed and approved by the FDA, the compound suggested as a treatment for hepatic encephalopathy was unable to attract sufficient interest and investment to be tested for use in humans.
Collapse
|
8
|
Inhibition of Glutamate Release, but Not of Glutamine Recycling to Glutamate, Is Involved in Delaying the Onset of Initial Lithium-Pilocarpine-Induced Seizures in Young Rats by a Non-Convulsive MSO Dose. Int J Mol Sci 2021; 22:ijms222011127. [PMID: 34681786 PMCID: PMC8536987 DOI: 10.3390/ijms222011127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Initial seizures observed in young rats during the 60 min after administration of pilocarpine (Pilo) were delayed and attenuated by pretreatment with a non-convulsive dose of methionine sulfoximine (MSO). We hypothesized that the effect of MSO results from a) glutamine synthetase block-mediated inhibition of conversion of Glu/Gln precursors to neurotransmitter Glu, and/or from b) altered synaptic Glu release. Pilo was administered 60 min prior to sacrifice, MSO at 75 mg/kg, i.p., 2.5 h earlier. [1,2-13C]acetate and [U-13C]glucose were i.p.-injected either together with Pilo (short period) or 15 min before sacrifice (long period). Their conversion to Glu and Gln in the hippocampus and entorhinal cortex was followed using [13C] gas chromatography-mass spectrometry. Release of in vitro loaded Glu surrogate, [3H]d-Asp from ex vivo brain slices was monitored in continuously collected superfusates. [3H]d-Asp uptake was tested in freshly isolated brain slices. At no time point nor brain region did MSO modify incorporation of [13C] to Glu or Gln in Pilo-treated rats. MSO pretreatment decreased by ~37% high potassium-induced [3H]d-Asp release, but did not affect [3H]d-Asp uptake. The results indicate that MSO at a non-convulsive dose delays the initial Pilo-induced seizures by interfering with synaptic Glu-release but not with neurotransmitter Glu recycling.
Collapse
|
9
|
Moldovan OL, Rusu A, Tanase C, Vari CE. Glutamate - A multifaceted molecule: Endogenous neurotransmitter, controversial food additive, design compound for anti-cancer drugs. A critical appraisal. Food Chem Toxicol 2021; 153:112290. [PMID: 34023459 DOI: 10.1016/j.fct.2021.112290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
One of the most widely used flavour enhancers in the food industry is monosodium glutamate (MSG). MSG consumption has been on an upward trend, worrying in terms of potential toxic effects. This review is focused on the long-term toxicity of MSG and the experimental evidence that supports it. The article's primary purpose was to survey recently published data regarding the consumption of MSG within safe limits. The administered doses in animal models are very varied and have given rise to controversy. Also, the paper comprises pathways to lower MSG toxicity and highlight other underexploited biological effects, as anti-cancer potential. The administration of MSG, combined with various compounds, has been shown benefit against toxic effects. Several recent studies have identified a possible mechanism that recommends MSG and some derivatives as potential anti-cancer agents. New anti-cancer compounds based on the glutamic acid structure must be studied and further exploited. International regulations require harmonization of safe doses of MSG based on current scientific studies. Replacing MSG with other umami flavour enhancers may be a safer alternative for human health in the future. The biological consequences of MSG consumption or therapeutical administration have not been fully deciphered yet.
Collapse
Affiliation(s)
- Octavia-Laura Moldovan
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| | - Camil-Eugen Vari
- Pharmacy and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142, Târgu Mureș, Romania.
| |
Collapse
|
10
|
Sheng KL, Kang L, Pridham KJ, Dunkenberger LE, Sheng Z, Varghese RT. An integrated approach to biomarker discovery reveals gene signatures highly predictive of cancer progression. Sci Rep 2020; 10:21246. [PMID: 33277589 PMCID: PMC7718261 DOI: 10.1038/s41598-020-78126-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022] Open
Abstract
Current cancer biomarkers present variability in their predictive power and demonstrate limited clinical efficacy, possibly due to the lack of functional relevance of biomarker genes to cancer progression. To address this challenge, a biomarker discovery pipeline was developed to integrate gene expression profiles from The Cancer Genome Atlas and essential survival gene datasets from The Cancer Dependency Map, the latter of which catalogs genes driving cancer progression. By applying this pipeline to lung adenocarcinoma, lung squamous cell carcinoma, and glioblastoma, genes highly associated with cancer progression were identified and designated as progression gene signatures (PGSs). Analysis of area under the receiver operating characteristics curve revealed that PGSs predicted patient survival more accurately than previously identified cancer biomarkers. Moreover, PGSs stratified patients with high risk for progressive disease indicated by worse prognostic outcomes, increased frequency of cancer progression, and poor responses to chemotherapy. The robust performance of these PGSs were recapitulated in four independent microarray datasets from Gene Expression Omnibus and were further verified in six freshly dissected tumors from glioblastoma patients. Our results demonstrate the power of an integrated approach to cancer biomarker discovery and the possibility of implementing PGSs into clinical biomarker tests.
Collapse
Affiliation(s)
- Kevin L Sheng
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Kevin J Pridham
- Fralin Biomedical Research Institute at VTC, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Logan E Dunkenberger
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
- Fralin Biomedical Research Institute at VTC, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Zhi Sheng
- Fralin Biomedical Research Institute at VTC, 2 Riverside Circle, Roanoke, VA, 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Faculty of Health Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA.
| |
Collapse
|
11
|
Menga A, Serra M, Todisco S, Riera‐Domingo C, Ammarah U, Ehling M, Palmieri EM, Di Noia MA, Gissi R, Favia M, Pierri CL, Porporato PE, Castegna A, Mazzone M. Glufosinate constrains synchronous and metachronous metastasis by promoting anti-tumor macrophages. EMBO Mol Med 2020; 12:e11210. [PMID: 32885605 PMCID: PMC7539200 DOI: 10.15252/emmm.201911210] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 01/19/2023] Open
Abstract
Glutamine synthetase (GS) generates glutamine from glutamate and controls the release of inflammatory mediators. In macrophages, GS activity, driven by IL10, associates to the acquisition of M2-like functions. Conditional deletion of GS in macrophages inhibits metastasis by boosting the formation of anti-tumor, M1-like, tumor-associated macrophages (TAMs). From this basis, we evaluated the pharmacological potential of GS inhibitors in targeting metastasis, identifying glufosinate as a specific human GS inhibitor. Glufosinate was tested in both cultured macrophages and on mice bearing metastatic lung, skin and breast cancer. We found that glufosinate rewires macrophages toward an M1-like phenotype both at the primary tumor and metastatic site, countering immunosuppression and promoting vessel sprouting. This was also accompanied to a reduction in cancer cell intravasation and extravasation, leading to synchronous and metachronous metastasis growth inhibition, but no effects on primary tumor growth. Glufosinate treatment was well-tolerated, without liver and brain toxicity, nor hematopoietic defects. These results identify GS as a druggable enzyme to rewire macrophage functions and highlight the potential of targeting metabolic checkpoints in macrophages to treat cancer metastasis.
Collapse
Affiliation(s)
- Alessio Menga
- Laboratory of Tumor Inflammation and AngiogenesisCenter for Cancer Biology (CCB)VIBLeuvenBelgium
- Laboratory of Tumor Inflammation and AngiogenesisDepartment of OncologyKU LeuvenLeuvenBelgium
- Department of Molecular Biotechnology and Health ScienceMolecular Biotechnology CentreUniversity of TorinoTorinoItaly
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | - Marina Serra
- Laboratory of Tumor Inflammation and AngiogenesisCenter for Cancer Biology (CCB)VIBLeuvenBelgium
- Laboratory of Tumor Inflammation and AngiogenesisDepartment of OncologyKU LeuvenLeuvenBelgium
| | - Simona Todisco
- Department of SciencesUniversity of BasilicataPotenzaItaly
| | - Carla Riera‐Domingo
- Laboratory of Tumor Inflammation and AngiogenesisCenter for Cancer Biology (CCB)VIBLeuvenBelgium
- Laboratory of Tumor Inflammation and AngiogenesisDepartment of OncologyKU LeuvenLeuvenBelgium
| | - Ummi Ammarah
- Department of Molecular Biotechnology and Health ScienceMolecular Biotechnology CentreUniversity of TorinoTorinoItaly
| | - Manuel Ehling
- Laboratory of Tumor Inflammation and AngiogenesisCenter for Cancer Biology (CCB)VIBLeuvenBelgium
- Laboratory of Tumor Inflammation and AngiogenesisDepartment of OncologyKU LeuvenLeuvenBelgium
| | - Erika M Palmieri
- Cancer & Inflammation ProgramNational Cancer InstituteFrederickMDUSA
| | | | - Rosanna Gissi
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | - Maria Favia
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | - Ciro L Pierri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health ScienceMolecular Biotechnology CentreUniversity of TorinoTorinoItaly
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- IBIOM‐CNRInstitute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research CouncilBariItaly
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and AngiogenesisCenter for Cancer Biology (CCB)VIBLeuvenBelgium
- Laboratory of Tumor Inflammation and AngiogenesisDepartment of OncologyKU LeuvenLeuvenBelgium
- Department of Molecular Biotechnology and Health ScienceMolecular Biotechnology CentreUniversity of TorinoTorinoItaly
| |
Collapse
|
12
|
Frieg B, Görg B, Qvartskhava N, Jeitner T, Homeyer N, Häussinger D, Gohlke H. Mechanism of Fully Reversible, pH-Sensitive Inhibition of Human Glutamine Synthetase by Tyrosine Nitration. J Chem Theory Comput 2020; 16:4694-4705. [PMID: 32551588 DOI: 10.1021/acs.jctc.0c00249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamine synthetase (GS) catalyzes an ATP-dependent condensation of glutamate and ammonia to form glutamine. This reaction-and therefore GS-are indispensable for the hepatic nitrogen metabolism. Nitration of tyrosine 336 (Y336) inhibits human GS activity. GS nitration and the consequent loss of GS function are associated with a broad range of neurological diseases. The mechanism by which Y336 nitration inhibits GS, however, is not understood. Here, we show by means of unbiased MD simulations, binding, and configurational free energy computations that Y336 nitration hampers ATP binding but only in the deprotonated and negatively charged state of residue 336. By contrast, for the protonated and neutral state, our computations indicate an increased binding affinity for ATP. pKa computations of nitrated Y336 within GS predict a pKa of ∼5.3. Thus, at physiological pH, nitrated Y336 exists almost exclusively in the deprotonated and negatively charged state. In vitro experiments confirm these predictions, in that, the catalytic activity of nitrated GS is decreased at pH 7 and 6 but not at pH 4. These results indicate a novel, fully reversible, pH-sensitive mechanism for the regulation of GS activity by tyrosine nitration.
Collapse
Affiliation(s)
- Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Natalia Qvartskhava
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Jeitner
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Nadine Homeyer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
13
|
Huyghe D, Denninger AR, Voss CM, Frank P, Gao N, Brandon N, Waagepetersen HS, Ferguson AD, Pangalos M, Doig P, Moss SJ. Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy. Front Mol Neurosci 2019; 12:120. [PMID: 31178690 PMCID: PMC6536897 DOI: 10.3389/fnmol.2019.00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4+ toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain physiology, the mechanisms that regulate GS activity are poorly defined. Here, we demonstrate that GS is directly phosphorylated on threonine residue 301 (T301) within the enzyme’s active site by cAMP-dependent protein kinase (PKA). Phosphorylation of T301 leads to a dramatic decrease in glutamine synthesis. Enhanced T301 phosphorylation was evident in a mouse model of epilepsy, which may contribute to the decreased GS activity seen during this trauma. Thus, our results highlight a novel molecular mechanism that determines GS activity under both normal and pathological conditions.
Collapse
Affiliation(s)
- Deborah Huyghe
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Andrew R Denninger
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Caroline M Voss
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Frank
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ning Gao
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Nicholas Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, United States.,AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA, United States
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew D Ferguson
- Structure & Biophysics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | | | - Peter Doig
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| |
Collapse
|
14
|
Initial Metabolic Step of a Novel Ethanolamine Utilization Pathway and Its Regulation in Streptomyces coelicolor M145. mBio 2019; 10:mBio.00326-19. [PMID: 31113893 PMCID: PMC6529630 DOI: 10.1128/mbio.00326-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Until now, knowledge of the utilization of ethanolamine in Streptomyces was limited. Our work represents the first attempt to reveal a novel ethanolamine utilization pathway in the actinobacterial model organism S. coelicolor through the characterization of the key enzyme gamma-glutamylethanolamide synthetase GlnA4, which is absolutely required for growth in the presence of ethanolamine. The novel ethanolamine utilization pathway is dissimilar to the currently known ethanolamine utilization pathway, which occurs in metabolome. The novel ethanolamine utilization pathway does not result in the production of toxic by-products (such as acetaldehyde); thus, it is not encapsulated. We believe that this contribution is a milestone in understanding the ecology of Streptomyces and the utilization of alternative nitrogen sources. Our report provides new insight into bacterial primary metabolism, which remains complex and partially unexplored. Streptomyces coelicolor is a Gram-positive soil bacterium with a high metabolic and adaptive potential that is able to utilize a variety of nitrogen sources. However, little is known about the utilization of the alternative nitrogen source ethanolamine. Our study revealed that S. coelicolor can utilize ethanolamine as a sole nitrogen or carbon (N/C) source, although it grows poorly on this nitrogen source due to the absence of a specific ethanolamine permease. Heterologous expression of a putative ethanolamine permease (SPRI_5940) from Streptomycespristinaespiralis positively influenced the biomass accumulation of the overexpression strain grown in defined medium with ethanolamine. In this study, we demonstrated that a glutamine synthetase-like protein, GlnA4 (SCO1613), is involved in the initial metabolic step of a novel ethanolamine utilization pathway in S. coelicolor M145. GlnA4 acts as a gamma-glutamylethanolamide synthetase. Transcriptional analysis revealed that expression of glnA4 was induced by ethanolamine and repressed in the presence of ammonium. Regulation of glnA4 is governed by the transcriptional repressor EpuRI (SCO1614). The ΔglnA4 mutant strain was unable to grow on defined liquid Evans medium supplemented with ethanolamine. High-performance liquid chromatography (HPLC) analysis demonstrated that strain ΔglnA4 is unable to utilize ethanolamine. GlnA4-catalyzed glutamylation of ethanolamine was confirmed in an enzymatic in vitro assay, and the GlnA4 reaction product, gamma-glutamylethanolamide, was detected by HPLC/electrospray ionization-mass spectrometry (HPLC/ESI-MS). In this work, the first step of ethanolamine utilization in S. coelicolor M145 was elucidated, and a putative ethanolamine utilization pathway was deduced based on the sequence similarity and genomic localization of homologous genes.
Collapse
|
15
|
In vitro suppression of inflammatory cytokine response by methionine sulfoximine. JOURNAL OF INFLAMMATION-LONDON 2018; 15:17. [PMID: 30214381 PMCID: PMC6131744 DOI: 10.1186/s12950-018-0193-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Background The glutamine synthetase inhibitor methionine sulfoximine (MSO), shown previously to prevent death caused by an inflammatory liver response in mice, was tested on in vitro production of cytokines by mouse peritoneal macrophages triggered with lipopolysaccharide (LPS). Results MSO significantly reduced the production of Interleukin 6 (IL-6) and Tumor Necrosis Factor Alpha (TNFα) at 4 and 6 h after LPS-treatment. This reduction did not result from decreased transcription of IL-6 and TNFα genes, and therefore appeared to result from post-transcriptional inhibition of synthesis of these cytokines. MSO treatment did not inhibit total protein synthesis and did not reduce the production of a third LPS-triggered cytokine CXCL1, so the effect was not a toxic or global downregulation of the LPS response. The anti-inflammatory effects of a glutamine synthetase inhibitor were seen even though the medium contained abundant (2 mM) glutamine, suggesting that the target for this activity was not glutamine synthetase. In agreement with this hypothesis, the L,R isomer of MSO, which does not inhibit glutamine synthetase and was previously thought to be inert, both significantly reduced IL-6 secretion in isolated macrophages and increased survival in a mouse model for inflammatory liver failure. Conclusions Our findings provide evidence for a novel target of MSO. Future attempts to identify the additional target would therefore also provide a target for therapies to treat diseases involving damaging cytokine responses.
Collapse
|
16
|
Crispim M, Damasceno FS, Hernández A, Barisón MJ, Pretto Sauter I, Souza Pavani R, Santos Moura A, Pral EMF, Cortez M, Elias MC, Silber AM. The glutamine synthetase of Trypanosoma cruzi is required for its resistance to ammonium accumulation and evasion of the parasitophorous vacuole during host-cell infection. PLoS Negl Trop Dis 2018; 12:e0006170. [PMID: 29320490 PMCID: PMC5779702 DOI: 10.1371/journal.pntd.0006170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/23/2018] [Accepted: 12/16/2017] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, consumes glucose and amino acids depending on the environmental availability of each nutrient during its complex life cycle. For example, amino acids are the major energy and carbon sources in the intracellular stages of the T. cruzi parasite, but their consumption produces an accumulation of NH4+ in the environment, which is toxic. These parasites do not have a functional urea cycle to secrete excess nitrogen as low-toxicity waste. Glutamine synthetase (GS) plays a central role in regulating the carbon/nitrogen balance in the metabolism of most living organisms. We show here that the gene TcGS from T. cruzi encodes a functional glutamine synthetase; it can complement a defect in the GLN1 gene from Saccharomyces cerevisiae and utilizes ATP, glutamate and ammonium to yield glutamine in vitro. Overall, its kinetic characteristics are similar to other eukaryotic enzymes, and it is dependent on divalent cations. Its cytosolic/mitochondrial localization was confirmed by immunofluorescence. Inhibition by Methionine sulfoximine revealed that GS activity is indispensable under excess ammonium conditions. Coincidently, its expression levels are maximal in the amastigote stage of the life cycle, when amino acids are preferably consumed, and NH4+ production is predictable. During host-cell invasion, TcGS is required for the parasite to escape from the parasitophorous vacuole, a process sine qua non for the parasite to replicate and establish infection in host cells. These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.
Collapse
Affiliation(s)
- Marcell Crispim
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Agustín Hernández
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - María Julia Barisón
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Ismael Pretto Sauter
- Immunobiology of Leishmania-Macrophage Interaction Laboratory, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Raphael Souza Pavani
- Special Laboratory of Cell Cycle, Center of Toxins, Immunology and Cell Signalling, Butantan Institute, São Paulo, SP, Brazil
| | - Alexandre Santos Moura
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Elizabeth Mieko Furusho Pral
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Immunobiology of Leishmania-Macrophage Interaction Laboratory, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Maria Carolina Elias
- Special Laboratory of Cell Cycle, Center of Toxins, Immunology and Cell Signalling, Butantan Institute, São Paulo, SP, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
17
|
Patrick GJ, Fang L, Schaefer J, Singh S, Bowman GR, Wencewicz TA. Mechanistic Basis for ATP-Dependent Inhibition of Glutamine Synthetase by Tabtoxinine-β-lactam. Biochemistry 2018; 57:117-135. [PMID: 29039929 PMCID: PMC5934995 DOI: 10.1021/acs.biochem.7b00838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tabtoxinine-β-lactam (TβL), also known as wildfire toxin, is a time- and ATP-dependent inhibitor of glutamine synthetase produced by plant pathogenic strains of Pseudomonas syringae. Here we demonstrate that recombinant glutamine synthetase from Escherichia coli phosphorylates the C3-hydroxyl group of the TβL 3-(S)-hydroxy-β-lactam (3-HβL) warhead. Phosphorylation of TβL generates a stable, noncovalent enzyme-ADP-inhibitor complex that resembles the glutamine synthetase tetrahedral transition state. The TβL β-lactam ring remains intact during enzyme inhibition, making TβL mechanistically distinct from traditional β-lactam antibiotics such as penicillin. Our findings could enable the design of new 3-HβL transition state inhibitors targeting enzymes in the ATP-dependent carboxylate-amine ligase superfamily with broad therapeutic potential in many disease areas.
Collapse
Affiliation(s)
- Garrett J. Patrick
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Luting Fang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Jacob Schaefer
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| |
Collapse
|
18
|
Beaudin S, Welsh J. 1,25-Dihydroxyvitamin D Regulation of Glutamine Synthetase and Glutamine Metabolism in Human Mammary Epithelial Cells. Endocrinology 2017; 158:4174-4188. [PMID: 29029014 PMCID: PMC5711383 DOI: 10.1210/en.2017-00238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Genomic profiling has identified a subset of metabolic genes that are altered by 1,25-dihydroxyvitamin D (1,25D) in breast cells, including GLUL, the gene that encodes glutamine synthetase (GS). In this study, we explored the relevance of vitamin D modulation of GLUL and other metabolic genes in the context of glutamine utilization and dependence. We show that exposure of breast epithelial cells to glutamine deprivation or a GS inhibitor reduced growth and these effects were exacerbated by cotreatment with 1,25D. 1,25D downregulation of GLUL was sufficient to reduce abundance and activity of GS. Flow cytometry demonstrated that glutamine deprivation induced S phase arrest, likely due to reduced availability of glutamine for DNA synthesis. In contrast, 1,25D induced G0/G1 arrest, indicating that its effects are not solely due to reduced glutamine synthesis. Indeed, 1,25D also reduced expression of GLS1 and GLS2 genes, which code for glutaminases that shunt glutamine into the tricarboxylic acid (TCA) cycle. Consistent with reduced entry of glutamine into the TCA cycle, 1,25D inhibited glutamine oxidation and the metabolic response to exogenous glutamine as analyzed by Seahorse Bioscience extracellular flux assays. Effects of 1,25D on GLUL/GS expression and glutamine oxidation were retained in human mammary epithelial (HME) cells that express SV-40 (HME-LT cells) but not in those that express SV-40 and oncogenic H-Ras (HME-PR cells). Furthermore, HME-PR cells exhibited glutamine independence and expressed constitutively high levels of GLUL/GS, which were unaffected by 1,25D. Collectively, these data suggest that 1,25D alters glutamine availability, dependence, and metabolism in nontransformed and preneoplastic mammary epithelial cells in association with cell cycle arrest.
Collapse
Affiliation(s)
- Sarah Beaudin
- Cancer Research Center, University at Albany, Rensselaer, New York 12144
| | - JoEllen Welsh
- Cancer Research Center, University at Albany, Rensselaer, New York 12144
- Department of Environmental Health Sciences, University at Albany, Rensselaer, New York 12144
| |
Collapse
|
19
|
Kumar V, Yadav S, Soumya N, Kumar R, Babu NK, Singh S. Biochemical and inhibition studies of glutamine synthetase from Leishmania donovani. Microb Pathog 2017; 107:164-174. [DOI: 10.1016/j.micpath.2017.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/27/2022]
|
20
|
Jeitner TM, Kristoferson E, Azcona JA, Pinto JT, Stalnecker C, Erickson JW, Kung HF, Li J, Ploessl K, Cooper AJL. Fluorination at the 4 position alters the substrate behavior of L-glutamine and L-glutamate: Implications for positron emission tomography of neoplasias. J Fluor Chem 2017; 192:58-67. [PMID: 28546645 DOI: 10.1016/j.jfluchem.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two 4-fluoro-L-glutamine diastereoisomers [(2S,4R)-4-FGln, (2S,4S)-4-FGln] were previously developed for positron emission tomography. Label uptake into two tumor cell types was greater with [18F](2S,4R)-4-FGln than with [18F](2S,4S)-4-FGln. In the present work we investigated the enzymology of two diastereoisomers of 4-FGln, two diastereoisomers of 4-fluoroglutamate (4-FGlu) (potential metabolites of the 4-FGln diastereoisomers) and another fluoro-derivative of L-glutamine [(2S,4S)-4-(3-fluoropropyl)glutamine (FP-Gln)]. The two 4-FGlu diastereoisomers were found to be moderate-to-good substrates relative to L-glutamate of glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase. Additionally, alanine aminotransferase was shown to catalyze an unusual γ-elimination reaction with both 4-FGlu diastereoisomers. Both 4-FGlu diastereoisomers were shown to be poor substrates, but strong inhibitors of glutamine synthetase. Both 4-FGln diastereoisomers were shown to be poor substrates compared to L-glutamine of glutamine transaminase L and α-aminoadipate aminotransferase. However, (2S,4R)-4-FGln was found to be a poor substrate of glutamine transaminase K, whereas (2S,4S)-4-FGln was shown to be an excellent substrate. By contrast, FP-Gln was found to be a poor substrate of all enzymes examined. Evidently, substitution of H in position 4 by F in L-glutamine/L-glutamate has moderate-to-profound effects on enzyme-catalyzed reactions. The present results: 1) show that 4-FGln and 4-FGlu diastereoisomers may be useful for studying active site topology of glutamate- and glutamine-utilizing enzymes; 2) provide a framework for understanding possible metabolic transformations in tumors of 18F-labeled (2S,4R)-4-FGln, (2S,4S)-4-FGln, (2S,4R)-4-FGlu or (2S,4S)-4-FGlu; and 3) show that [18F]FP-Gln is likely to be much less metabolically active in vivo than are the [18F]4-FGln diastereoisomers.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Eva Kristoferson
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Juan A Azcona
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - John T Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Clint Stalnecker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jon W Erickson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hank F Kung
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Karl Ploessl
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
21
|
Brusilow WSA. Identification of the isomer of methionine sulfoximine that extends the lifespan of the SOD1 G93A mouse. Neurosci Lett 2017; 647:165-167. [PMID: 28323087 DOI: 10.1016/j.neulet.2017.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
Abstract
In previous studies methionine sulfoximine (MSO) significantly extended the lifespan of the SOD1 G93A mouse model for ALS. Those studies used commercially available MSO, which is a racemic mixture of the LS and LR diastereomers, leaving unanswered the question of which isomer was responsible for the therapeutic effects. In this study we tested both purified isomers and showed that the LS isomer, a well-characterized inhibitor of glutamine synthetase, extends the lifespan of these mice, but the LR isomer, which has no known activity, does not.
Collapse
Affiliation(s)
- William S A Brusilow
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Scott Hall, 540 E. Canfield Ave., Detroit, MI 48201, United States.
| |
Collapse
|
22
|
Hariharan VA, Denton TT, Paraszcszak S, McEvoy K, Jeitner TM, Krasnikov BF, Cooper AJL. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites. BIOLOGY 2017; 6:biology6020024. [PMID: 28358347 PMCID: PMC5485471 DOI: 10.3390/biology6020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Many enzymes make "mistakes". Consequently, repair enzymes have evolved to correct these mistakes. For example, lactate dehydrogenase (LDH) and mitochondrial malate dehydrogenase (mMDH) slowly catalyze the reduction of 2-oxoglutarate (2-OG) to the oncometabolite l-2-hydroxyglutarate (l-2-HG). l-2-HG dehydrogenase corrects this error by converting l-2-HG to 2-OG. LDH also catalyzes the reduction of the oxo group of 2-oxoglutaramate (2-OGM; transamination product of l-glutamine). We show here that human glutamine synthetase (GS) catalyzes the amidation of the terminal carboxyl of both the l- and d- isomers of 2-HG. The reaction of 2-OGM with LDH and the reaction of l-2-HG with GS generate l-2-hydroxyglutaramate (l-2-HGM). We also show that l-2-HGM is a substrate of human ω-amidase. The product (l-2-HG) can then be converted to 2-OG by l-2-HG dehydrogenase. Previous work showed that 2-oxosuccinamate (2-OSM; transamination product of l-asparagine) is an excellent substrate of LDH. Finally, we also show that human ω-amidase converts the product of this reaction (i.e., l-2-hydroxysuccinamate; l-2-HSM) to l-malate. Thus, ω-amidase may act together with hydroxyglutarate dehydrogenases to repair certain "mistakes" of GS and LDH. The present findings suggest that non-productive pathways for nitrogen metabolism occur in mammalian tissues in vivo. Perturbations of these pathways may contribute to symptoms associated with hydroxyglutaric acidurias and to tumor progression. Finally, methods for the synthesis of l-2-HGM and l-2-HSM are described that should be useful in determining the roles of ω-amidase/4- and 5-C compounds in photorespiration in plants.
Collapse
Affiliation(s)
- Vivek A Hariharan
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| | - Travis T Denton
- Department of Pharmaceutical Sciences, Washington State University, College of Pharmacy, Spokane, WA 99210-1495, USA.
| | - Sarah Paraszcszak
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| | - Kyle McEvoy
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| | - Thomas M Jeitner
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| | - Boris F Krasnikov
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10590, USA.
| |
Collapse
|
23
|
Brusilow WSA, Peters TJ. Therapeutic effects of methionine sulfoximine in multiple diseases include and extend beyond inhibition of glutamine synthetase. Expert Opin Ther Targets 2017; 21:461-469. [PMID: 28292200 DOI: 10.1080/14728222.2017.1303484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Methionine sulfoximine (MSO), a well-characterized inhibitor of glutamine synthetase, displays significant therapeutic benefits in animal models for several human diseases. This amino acid might therefore be a viable candidate for drug development to treat diseases for which there are few effective therapies. Areas covered: We describe the effects of MSO on brain swelling occurring in overt hepatic encephalopathy resulting from liver failure, the effects of MSO on excitotoxic damage involved in amyotrophic lateral sclerosis (ALS) or resulting from stroke, and the effects of MSO on a model for an inflammatory immune response involved in a range of diseases. We conclude that these results imply the existence of another therapeutic target for MSO in addition to glutamine synthetase. Expert opinion: We summarize the various diseases for which MSO treatment might be a candidate for drug development. We discuss why MSO has limited enthusiasm in the scientific and medical communities for use in humans, with a rebuttal to those negative opinions. And we conclude that MSO should be considered a candidate drug to treat brain swelling involved in overt hepatic encephalopathy and diseases involving an inflammatory immune response.
Collapse
Affiliation(s)
- William S A Brusilow
- a Department of Biochemistry and Molecular Biology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Tyler J Peters
- a Department of Biochemistry and Molecular Biology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
24
|
Rowlands BD, Klugmann M, Rae CD. Acetate metabolism does not reflect astrocytic activity, contributes directly to GABA synthesis, and is increased by silent information regulator 1 activation. J Neurochem 2017; 140:903-918. [PMID: 27925207 DOI: 10.1111/jnc.13916] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022]
Abstract
[13 C]Acetate is known to label metabolites preferentially in astrocytes rather than neurons and it has consequently been used as a marker for astrocytic activity. Recent discoveries suggest that control of acetate metabolism and its contributions to the synthesis of metabolites in brain is not as simple as first thought. Here, using a Guinea pig brain cortical tissue slice model metabolizing [1-13 C]D-glucose and [1,2-13 C]acetate, we investigated control of acetate metabolism and the degree to which it reflects astrocytic activity. Using a range of [1,2-13 C]acetate concentrations, we found that acetate is a poor substrate for metabolism and will inhibit metabolism of itself and of glucose at concentrations in excess of 2 mmol/L. By activating astrocytes using potassium depolarization, we found that use of [1,2-13 C]acetate to synthesize glutamine decreases significantly under these conditions showing that acetate metabolism does not necessarily reflect astrocytic activity. By blocking synthesis of glutamine using methionine sulfoximine, we found that significant amount of [1,2-13 C]acetate are still incorporated into GABA and its metabolic precursors in neurons, with around 30% of the GABA synthesized from [1,2-13 C]acetate likely to be made directly in neurons rather than from glutamine supplied by astrocytes. Finally, to test whether activity of the acetate metabolizing enzyme acetyl-CoA synthetase is under acetylation control in the brain, we incubated slices with the AceCS1 deacetylase silent information regulator 1 (SIRT1) activator SRT 1720 and showed consequential increased incorporation of [1,2-13 C]acetate into metabolites. Taken together, these data show that acetate metabolism is not directly nor exclusively related to astrocytic metabolic activity, that use of acetate is related to enzyme acetylation and that acetate is directly metabolized to a significant degree in GABAergic neurons. Changes in acetate metabolism should be interpreted as modulation of metabolism through changes in cellular energetic status via altered enzyme acetylation levels rather than simply as an adjustment of glial-neuronal metabolic activity.
Collapse
Affiliation(s)
- Benjamin D Rowlands
- Neuroscience Research Australia, Randwick, NSW, Australia.,Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Neuroscience Research Australia, Randwick, NSW, Australia.,Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, NSW, Australia.,School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal Biochem 2016; 529:127-143. [PMID: 28034792 DOI: 10.1016/j.ab.2016.12.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease.
Collapse
|
26
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
27
|
Jeitner TM, Battaile K, Cooper AJL. Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke. Neurochem Res 2015; 40:2544-56. [DOI: 10.1007/s11064-015-1667-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 01/04/2023]
|
28
|
Inhibition of glutamine synthetase: a potential drug target in Mycobacterium tuberculosis. Molecules 2014; 19:13161-76. [PMID: 25162957 PMCID: PMC6271674 DOI: 10.3390/molecules190913161] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6-9 months) and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.
Collapse
|