1
|
Lan H, Ai Z, Xu S, Li H, Feng Z, Guo R, Wang Y. Genetically predicted amino acids related to neural regulation mediate the association between diabetes mellitus and postherpetic neuralgia: a Mendelian randomization study. Diabetol Metab Syndr 2025; 17:104. [PMID: 40149016 PMCID: PMC11951531 DOI: 10.1186/s13098-025-01672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Postherpetic neuralgia (PHN) and diabetes mellitus frequently coexist in clinical settings; however, the causal relationship between them remains unclear. Moreover, the potential mediating role of amino acids related to neural regulation in this association has not been fully explored yet. METHODS Univariable Mendelian randomized (UVMR) was utilized to examine the causal relationship between various subtypes of diabetes mellitus and PHN, with the inverse variance weighted method as the main approach. Multivariable MR (MVMR) was conducted to assess the direct effect of diabetes mellitus, accounting for waist circumference, diabetic neuropathy/ulcers, and depression. Moreover, a two-step MR analysis was employed to investigate the mediating role of neurotransmitter-related amino acids in the association between diabetes mellitus and PHN. RESULTS A significant statistical correlation was found between type 2 diabetes mellitus (T2DM) and PHN (odds ratio, OR: 1.23, 95% confidence interval, CI: 1.01-1.49, P = 0.036), while in type 1 diabetes mellitus or pregnancy diabetes mellitus, no evidence of the association with PHN was observed. MVMR analyses demonstrated that the effect of T2DM on PHN remained significant after adjusting for waist circumference, diabetic neuropathy/ulcers, and depression. Further mediation analysis revealed that phenylalanine accounted for 49.2% (95% CI: 22.7- 75.6%) of the total effect of T2DM on PHN. CONCLUSION The current study suggested that T2DM was associated with an increased risk of PHN, with phenylalanine playing a mediating role. These findings provided valuable insights for the screening and prevention of PHN in clinical practice.
Collapse
Affiliation(s)
- Haoning Lan
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong' an Road, Beijing, 100050, China
| | - Zhangran Ai
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong' an Road, Beijing, 100050, China
| | - Songchao Xu
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong' an Road, Beijing, 100050, China
| | - Huili Li
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong' an Road, Beijing, 100050, China
| | - Zhong Feng
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong' an Road, Beijing, 100050, China
| | - Ruijuan Guo
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong' an Road, Beijing, 100050, China
| | - Yun Wang
- Department of Anaesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong' an Road, Beijing, 100050, China.
| |
Collapse
|
2
|
Bu X, Yang L, Han X, Liu S, Lu X, Wan J, Zhang X, Tang P, Zhang W, Zhong L. DHM/SERS reveals cellular morphology and molecular changes during iPSCs-derived activation of astrocytes. BIOMEDICAL OPTICS EXPRESS 2024; 15:4010-4023. [PMID: 38867782 PMCID: PMC11166415 DOI: 10.1364/boe.524356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
The activation of astrocytes derived from induced pluripotent stem cells (iPSCs) is of great significance in neuroscience research, and it is crucial to obtain both cellular morphology and biomolecular information non-destructively in situ, which is still complicated by the traditional optical microscopy and biochemical methods such as immunofluorescence and western blot. In this study, we combined digital holographic microscopy (DHM) and surface-enhanced Raman scattering (SERS) to investigate the activation characteristics of iPSCs-derived astrocytes. It was found that the projected area of activated astrocytes decreased by 67%, while the cell dry mass increased by 23%, and the cells changed from a flat polygonal shape to an elongated star-shaped morphology. SERS analysis further revealed an increase in the intensities of protein spectral peaks (phenylalanine 1001 cm-1, proline 1043 cm-1, etc.) and lipid-related peaks (phosphatidylserine 524 cm-1, triglycerides 1264 cm-1, etc.) decreased in intensity. Principal component analysis-linear discriminant analysis (PCA-LDA) modeling based on spectral data distinguished resting and reactive astrocytes with a high accuracy of 96.5%. The increase in dry mass correlated with the increase in protein content, while the decrease in projected area indicated the adjustment of lipid composition and cell membrane remodeling. Importantly, the results not only reveal the cellular morphology and molecular changes during iPSCs-derived astrocytes activation but also reflect their mapping relationship, thereby providing new insights into diagnosing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoya Bu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Liwei Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xianxin Han
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Jianhui Wan
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Tang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Weina Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Liyun Zhong
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Liu P, Li H, Xu H, Gong J, Jiang M, Xu Z, Shi J. Aggravated hepatic fibrosis induced by phenylalanine and tyrosine was ameliorated by chitooligosaccharides supplementation. iScience 2023; 26:107754. [PMID: 37731617 PMCID: PMC10507131 DOI: 10.1016/j.isci.2023.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/21/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Hepatic fibrosis is a classic pathological manifestation of metabolic chronic hepatopathy. The pathological process might either gradually deteriorate into cirrhosis and ultimately liver cancer with inappropriate nutrition supply, or be slowed down by several multifunctional nutrients, alternatively. Herein, we found diet with excessive phenylalanine (Phe) and tyrosine (Tyr) exacerbated hepatic fibrosis symptoms of liver dysfunction and gut microflora dysbiosis in mice. Chitooligosaccharides (COS) could ameliorate hepatic fibrosis with the regulation of amino acid metabolism by downregulating the mTORC1 pathway, especially that of Phe and Tyr, and also with the alleviation of the dysbiosis of gut microbiota, simultaneously. Conclusively, this work presents new insight into the role of Phe and Tyr in the pathologic process of hepatic fibrosis, while revealing the effectiveness and molecular mechanism of COS in improving hepatic fibrosis from the perspective of metabolites.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongyu Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinsong Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Fan Y, Chen C, Xie X, Yang B, Wu W, Yue F, Lv X, Chen C. Rapid noninvasive screening of cerebral ischemia and cerebral infarction based on tear Raman spectroscopy combined with multiple machine learning algorithms. Lasers Med Sci 2021; 37:417-424. [PMID: 33970383 DOI: 10.1007/s10103-021-03273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
Researchers have established a classification model based on tear Raman spectroscopy combined with machine learning classification algorithms, which realizes rapid noninvasive classification of cerebral infarction and cerebral ischemia, which is of great significance for clinical medical diagnosis. Through spectral data analysis, it is found that there are differences in the content of tyrosine, phenylalanine, and carotenoids in the tears of patients with cerebral ischemia and patients with cerebral infarction. We try to establish a classification model for rapid noninvasive screening of cerebral infarction and cerebral ischemia through these differences. The experiment has four parts, including normalization, data enhancement, feature extraction, and data classification. The researchers combined three feature extraction methods with four machine classification models to build a total of 12 classification models. Integrating 8 classification criteria, the classification accuracy of all models is above 85%, especially PLS-PNN has achieved 100% accuracy and better running time. The experimental results show that tear Raman spectroscopy combined with machine learning classification model has a good effect on the screening of cerebral ischemia and cerebral infarction, which is conducive to the noninvasive and rapid clinical diagnosis of cerebrovascular diseases in the future.
Collapse
Affiliation(s)
- Yangyang Fan
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Cheng Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, 830046, China
| | - Xiaodong Xie
- People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Ophthalmology, Urumqi, 830001, China.
| | - Bo Yang
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Wei Wu
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Feilong Yue
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi, 830046, China.
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
- Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, 830046, China.
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Signal Detection and Processing, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
5
|
Bortoluzzi VT, Dutra Filho CS, Wannmacher CMD. Oxidative stress in phenylketonuria-evidence from human studies and animal models, and possible implications for redox signaling. Metab Brain Dis 2021; 36:523-543. [PMID: 33580861 DOI: 10.1007/s11011-021-00676-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/24/2021] [Indexed: 01/11/2023]
Abstract
Phenylketonuria (PKU) is one of the commonest inborn error of amino acid metabolism. Before mass neonatal screening was possible, and the success of introducing diet therapy right after birth, the typical clinical finds in patients ranged from intellectual disability, epilepsy, motor deficits to behavioral disturbances and other neurological and psychiatric symptoms. Since early diagnosis and treatment became widespread, usually only those patients who do not strictly follow the diet present psychiatric, less severe symptoms such as anxiety, depression, sleep pattern disturbance, and concentration and memory problems. Despite the success of low protein intake in preventing otherwise severe outcomes, PKU's underlying neuropathophysiology remains to be better elucidated. Oxidative stress has gained acceptance as a disturbance implicated in the pathogenesis of PKU. The conception of oxidative stress has evolved to comprehend how it could interfere and ultimately modulate metabolic pathways regulating cell function. We summarize the evidence of oxidative damage, as well as compromised antioxidant defenses, from patients, animal models of PKU, and in vitro experiments, discussing the possible clinical significance of these findings. There are many studies on oxidative stress and PKU, but only a few went further than showing macromolecular damage and disturbance of antioxidant defenses. In this review, we argue that these few studies may point that oxidative stress may also disturb redox signaling in PKU, an aspect few authors have explored so far. The reported effect of phenylalanine on the expression or activity of enzymes participating in metabolic pathways known to be responsive to redox signaling might be mediated through oxidative stress.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil.
| | - Carlos Severo Dutra Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| |
Collapse
|
6
|
Wyse ATS, Dos Santos TM, Seminotti B, Leipnitz G. Insights from Animal Models on the Pathophysiology of Hyperphenylalaninemia: Role of Mitochondrial Dysfunction, Oxidative Stress and Inflammation. Mol Neurobiol 2021; 58:2897-2909. [PMID: 33550493 DOI: 10.1007/s12035-021-02304-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Phenylketonuria (PKU) is an inborn error of metabolism caused by phenylalanine hydroxylase (PAH) deficiency and characterized by elevated plasma levels of phenylalanine (hyperphenylalaninemia-HPA). In severe cases, PKU patients present with neurological dysfunction and hepatic damage, but the underlying mechanisms are not fully elucidated. Other forms of HPA also characterized by neurological symptoms occur in rare instances due to defects in the metabolism of the PAH cofactor tetrahydrobiopterin. This review aims to gather the knowledge acquired on the phenylalanine-induced toxicity focusing on findings obtained from pre-clinical studies. Mounting evidence obtained from PKU genetic mice, rats submitted to different HPA models, and cell cultures exposed to phenylalanine has shown that high levels of this amino acid impair mitochondrial bioenergetics, provoke changes in oxidative and inflammatory status, and induce apoptosis. Noteworthy, some data demonstrated that phenylalanine-induced oxidative stress occurs specifically in mitochondria. Further studies have shown that the metabolites derived from phenylalanine, namely phenylpyruvate, phenyllactate, and phenylacetate, also disturb oxidative status. Therefore, it may be presumed that mitochondrial damage is one of the most important mechanisms responsible for phenylalanine toxicity. It is expected that the findings reviewed here may contribute to the understanding of PKU and HPA pathophysiology and to the development of novel therapeutic strategies for these disorders.
Collapse
Affiliation(s)
- Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Tiago M Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil. .,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Creatine nanoliposome reverts the HPA-induced damage in complex II–III activity of the rats’ cerebral cortex. Mol Biol Rep 2019; 46:5897-5908. [DOI: 10.1007/s11033-019-05023-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
|
8
|
Keshavarzi F, Rastegar M, Vessal M, Rafiei Dehbidi G, Khorsand M, Ganjkarimi AH, Takhshid MA. Serum ischemia modified albumin is a possible new marker of oxidative stress in phenylketonuria. Metab Brain Dis 2018; 33:675-680. [PMID: 29270710 DOI: 10.1007/s11011-017-0165-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
The role of oxidative stress in the pathogenesis of phenylketonuria (PKU)-associated disorders has been implicated. Ischemia modified albumin (IMA) is a modified form of serum albumin, which is produced under the conditions of oxidative stress. The aim of this study was to measure the serum level of IMA in the PKU patients and to investigate its ability in predicting the status of oxidative stress in these patients. Fifty treated-PKU patients and fifty age- and sex-matched healthy subjects were included in the study. The blood samples were obtained and the serum level of phenylalanine (Phe) was measured using reverse phase HPLC method. The levels of IMA, malondialdehyde (MDA), gamma-glutamyl transferase (GGT) activity, and uric acid (UA) were determined using colorimetric methods. The levels of serum Phe, IMA, and MDA were significantly higher (p < 0.001) and the level of UA (p < 0.05) was lower in the PKU patients compared to control group. Serum IMA level was positively correlated with MDA (r = 0.585, p < 0.001) and UA (r = 0.6, p < 0.001). An inverse relationship was observed between the serum level of IMA and Phe (r = - 0.410, p < 0. 01). Results of the present study suggest that serum IMA level could be used as a novel marker for the evaluation of oxidative stress in the PKU patients.
Collapse
Affiliation(s)
- Fatemeh Keshavarzi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Mohsen Rastegar
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Vessal
- Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Gholamreza Rafiei Dehbidi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Khorsand
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Ganjkarimi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Naguib YM, Azmy RM, Samaka RM, Salem MF. Pleurotus ostreatus opposes mitochondrial dysfunction and oxidative stress in acetaminophen-induced hepato-renal injury. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:494. [PMID: 25510860 PMCID: PMC4301462 DOI: 10.1186/1472-6882-14-494] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 12/10/2014] [Indexed: 02/01/2023]
Abstract
Background Acetaminophen (APAP)-induced toxicity is a predominant cause of acute hepatic and renal failure. In both humans and rodents toxicity begins with a reactive metabolite that binds to proteins. This leads to mitochondrial dysfunction and nuclear DNA fragmentation resulting in necrotic cell death. Pleurotus ostreatus (an edible oyster mushroom) is well recognized as a flavourful food, as well as a medicinal supplement. In the present study, we evaluated the role of Pleurotus ostreatus in the protection against APAP-induced hepato-renal toxicity. We also explored the mechanism by which Pleurotus ostreatus exerts its effects. Methods Ninety adult male Swiss albino mice were divided into three groups (30 mice/group). Mice were offered normal diet (control and APAP groups), or diet supplemented with 10% Pleurotus ostreatus (APAP + Pleurotus ostreatus) for 10 days. Mice were either treated with vehicle (control group, single intra-peritoneal injection.), or APAP (APAP and APAP + Pleurotus ostreatus groups, single intra-peritoneal injection, 500 mg/kg), 24 hours after the last meal. Results APAP increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) glutamate dehydrogenase (GDH), creatinine, blood urea nitrogen (BUN), urinary kidney injury molecule-1 (KIM-1), and hepatic and renal malondialdehyde (MDA) content. APAP decreased hepatic and renal glutathione (GSH) content, as well as glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities. Supplementation with Pleurotus ostreatus significantly reduced APAP-induced elevated levels of ALT, AST, GDH, creatinine, BUN, KIM-1and MDA, while GSH level, and GSH-Px and SOD activities were significantly increased. Our findings were further validated by histopathology; treatment with Pleurotus ostreatus significantly decreased APAP-induced cell necrosis in liver and kidney tissues. Conclusions We report here that the antioxidant effect of Pleurotus ostreatus opposes mitochondrial dysfunction and oxidative stress accompanying APAP over-dose, with subsequent clinically beneficial effects on liver and kidney tissues.
Collapse
|