1
|
Zhou R, Wang Z, Zhou B, Yu Z, Wu C, Hou J, Cheng K, Liu TC. Estrogen receptors mediate the antidepressant effects of aerobic exercise: A possible new mechanism. Front Aging Neurosci 2022; 14:1040828. [PMID: 36570542 PMCID: PMC9780551 DOI: 10.3389/fnagi.2022.1040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose This study aimed to examine whether aerobic exercise exerts mood-modulating effects through an estrogen signaling mechanism. Method The experiment was divided into two parts. The first part is to compare the three modeling methods to obtain the most obvious method of depression-like phenotype for further study in the second part. The first part of ovariectomized rats (age, 13 weeks) was tested when rats were 14 or 22 weeks old or in the sixth week after 3 weeks of chronic restraint stress. The second part was to treat the animals with the most obvious depression-like phenotype in different ways, placebo treatment or estradiol (E2) replacement therapy was administered, aerobic training, or estrogen receptor antagonist treatment. The cognitive (Barnes maze and 3-chamber social tests), anxiety-like (open-field and elevated plus maze tests) and depression-like (sucrose preference and forced swim tests) behaviors of rats in both parts were analyzed to study the effects of estrogen depletion and aerobic exercise. Results Rats did not develop depressive symptoms immediately after ovariectomy, however, the symptoms became more pronounced with a gradual decrease in ovarian hormone levels. Compared with the placebo or control groups, the exercise and E2 groups showed improved performance in all behavioral test tasks, and the antidepressant effects of aerobic exercise were comparable to those of estrogen. Moreover, the estrogen receptor antagonist has markedly inhibited the antidepressant effects of aerobic exercise. Conclusion Estrogen receptors may mediate the antidepressant effects of aerobic exercise. In addition, an increasingly fragile ovarian hormonal environment may underlies chronic restraint stress-induced depression.
Collapse
|
2
|
Lindsay A, Trewin AJ, Sadler KJ, Laird C, Della Gatta PA, Russell AP. Sensitivity to behavioral stress impacts disease pathogenesis in dystrophin-deficient mice. FASEB J 2021; 35:e22034. [PMID: 34780665 DOI: 10.1096/fj.202101163rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.
Collapse
Affiliation(s)
- Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kate J Sadler
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Claire Laird
- Researcher Development, Deakin Research, Deakin University, Geelong, Victoria, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
3
|
Xiao Z, Cao Z, Yang J, Jia Z, Du Y, Sun G, Lu Y, Pei L. Baicalin promotes hippocampal neurogenesis via the Wnt/β-catenin pathway in a chronic unpredictable mild stress-induced mouse model of depression. Biochem Pharmacol 2021; 190:114594. [PMID: 33964281 DOI: 10.1016/j.bcp.2021.114594] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Hippocampal neurogenesis is known to be related to depressive symptoms. Increasing evidence indicates that Wnt/β-catenin signaling regulates multiple aspects of adult hippocampal neurogenesis. Baicalin is a major flavonoid compound with multiple pharmacological effects such as anti-inflammatory, anti-apoptotic, and neuroprotective effects. The current study aimed to explore the antidepressant effects of baicalin and its possible molecular mechanisms affecting hippocampal neurogenesis via the regulation of the Wnt/β-catenin signaling pathway. A chronic mild unpredictable stress (CUMS) model of depression was used in the study. The CUMS-induced mice were treated with baicalin (50 and 100 mg/kg) for 21 days, orally, and the fluoxetine was used as positive control drug. The results indicated that baicalin alleviated CUMS-induced depression-like behaviour, and improved the nerve cells' survival of the hippocampal dentate gyrus (DG) in CUMS-induced depression of model mice and increased Ki-67- and doublecortin (DCX)-positive cells to restore CUMS-induced suppression of hippocampal neurogenesis. The related proteins in the Wnt/β-catenin signaling pathway, which declined in the CUMS-induced depression model of mice, were upregulated after baicalin treatment, including Wingless3a (Wnt3a), dishevelled2 (DVL2), and β-catenin. Further study found that the phosphorylation rate of glycogen synthase kinase-3β (GSK3β) and β-catenin nuclear translocation increased, as the levels of the β-catenin target genes cyclinD1, c-myc, NeuroD1, and Ngn2 upregulated after baicalin treatment. In conclusion, these findings suggest that baicalin may promote hippocampal neurogenesis, thereby exerting the antidepressant effect via regulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhigang Xiao
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China
| | - Zhuoqing Cao
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China
| | - Jiali Yang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China
| | - Zhixia Jia
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China
| | - Yuru Du
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Guoqiang Sun
- Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China
| | - Ye Lu
- Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China.
| | - Lin Pei
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang 050031, China.
| |
Collapse
|
4
|
Keugong Wado E, Kubicki M, Ngatanko AHH, Léa Blondelle KD, Jorelle Linda D, Roland RN, Balbine K, Lamshoeft M, Assongalem AE, Foyet HS. Anxiolytic and antidepressant effects of Ziziphus mucronata hydromethanolic extract in male rats exposed to unpredictable chronic mild stress: Possible mechanisms of actions. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112987. [PMID: 32446929 DOI: 10.1016/j.jep.2020.112987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/04/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ziziphus mucronata (ZM) is used traditionally in the treatment of mood and depression. However, no existing scientific data is confirming this traditional claim. AIM OF THE STUDY The present study was planned to investigate the anxiolytic and antidepressant-like effects of this plant in a stressed-induced depression model in rats. MATERIALS AND METHODS Depressive-like behaviors were induced by exposing rats to different stress paradigms daily for 30 days. A sucrose preference test was performed to assess anhedonia in rats. Anxiety and depression-related behavior were assessed. The oxidative parameters (lipid peroxidation, SOD and catalase activities) were evaluated. Pindolol and Flumazenil were also used to assess the mechanism of action of ZM extract. RESULTS The results showed that chronic administration of ZM (150, 300, and 600 mg/kg, p.o., 30 days) and imipramine treatment (20 mg/kg, p.o, 30 days) remarkably (P < 0.05) reversed the UCMS-induced behavioral changes observed in stress vehicle treated rats by reducing sucrose preference, decreased the immobility period in the FST and latency in NSF. Besides, ZM (300 and 600 mg/kg, p.o., 30 days) raised the percentages of time spent and number of open arms entries as well as the number of transitions. Also, ZM (300 mg/kg, (P < 0.05) decreased lipid peroxidation and increased both SOD and catalase activities (300 and 600 mg/kg, (P < 0.05)). These aforementioned behavioral indices were also completely nullified by pindolol a β-adrenoceptors blocker and 5-HT 1A/1B receptor antagonist but not by flumazenil, a benzodiazepine receptors antagonist. CONCLUSION ZM improved symptoms of anxiety and depression in behavioral despair paradigm in chronically stressed rats. The observed effects could be due to its capacities to restore the antioxidant status, and probably the modulation of monoamines transmissions.
Collapse
Affiliation(s)
- Eglantine Keugong Wado
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box: 814, Maroua, Cameroon.
| | - Michael Kubicki
- Research and Development Bayer Crop Science, 40789, Monheim, Germany
| | | | | | - Damo Jorelle Linda
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box: 814, Maroua, Cameroon
| | - Rebe Nhouma Roland
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box: 814, Maroua, Cameroon
| | - Kamleu Balbine
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box: 814, Maroua, Cameroon
| | - Marc Lamshoeft
- Research and Development Bayer Crop Science, 40789, Monheim, Germany
| | - Acha Emmanuel Assongalem
- Department of Biomedical Science, Faculty of Health Sciences, University of Buea, P.O. Box: 63, Buea, Cameroon
| | - Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box: 814, Maroua, Cameroon
| |
Collapse
|
5
|
Mudra Rakshasa A, Tong MT. Making "Good" Choices: Social Isolation in Mice Exacerbates the Effects of Chronic Stress on Decision Making. Front Behav Neurosci 2020; 14:81. [PMID: 32523519 PMCID: PMC7261864 DOI: 10.3389/fnbeh.2020.00081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic stress can impact decision-making and lead to a preference for immediate rewards rather than long-term payoffs. Factors that may influence these effects of chronic stress on decision-making are under-explored. Here we used a mouse model to investigate the changes in decision-making caused by the experience of chronic stress and the role of social isolation in exaggerating these changes. To test decision-making, mice were trained to perform a Cost-Benefit Conflict (CBC) task on a T-maze, in which they could choose between a high-reward, high-risk alternative and a low-reward, low-risk alternative. Mice were either housed in groups or alone throughout the experiment. Both groups of mice underwent a seven-day period of repeated immobilization to induce chronic stress. Stress levels were confirmed using behavioral (open field test) and physiological (urine corticosterone ELISA) measures. We found a significant increase in frequency of high-risk decisions after exposure to chronic stress among both socially- and individually-housed mice. Crucially, socially-housed mice showed a significantly smaller increase in high-risk decision-making compared to singly-housed mice. These findings suggest that chronic stress leads to an increase in high-risk decision-making in mice, and that lack of social interaction may exacerbate this stress effect.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa
- Neuroscience Program, Earlham College, Richmond, IN, United States.,Biochemistry Program, Earlham College, Richmond, IN, United States
| | - Michelle T Tong
- Neuroscience Program, Earlham College, Richmond, IN, United States.,Department of Psychology, Earlham College, Richmond, IN, United States.,Neuroscience Program and Department of Biology, University of St. Thomas, St. Paul, MN, United States
| |
Collapse
|
6
|
Zhang K, Lin W, Zhang J, Zhao Y, Wang X, Zhao M. Effect of Toll-like receptor 4 on depressive-like behaviors induced by chronic social defeat stress. Brain Behav 2020; 10:e01525. [PMID: 31945269 PMCID: PMC7066327 DOI: 10.1002/brb3.1525] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/14/2019] [Accepted: 11/10/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION A growing body of evidence suggests that stress is an important factor in depression, and pro-inflammatory cytokines contribute to the occurrence and development of depression in both animal models and human patients. Toll-like receptor 4 (TLR4) has been shown to be a key innate immune pattern recognition receptor involved in the regulation of stress responses and inflammation. However, the exact effects of TLR4 on depressive-like behaviors induced by chronic social defeat stress (CSDS) are not known. METHODS In this study, the effects of TLR4 on depressive-like behaviors were investigated in an animal model of depression induced by CSDS. The depressive-like behaviors were assessed by forced swimming test (FST), social interaction test (SIT), and light-dark box test (LDT). The protein expressions of TLR4 and tumor necrosis factor-α (TNF-α) in the hippocampus were measured using Western blotting. RESULTS We found that CSDS increased TLR4 protein levels in the hippocampus and induced behavioral despair in FST, social avoidance in SIT, and anxiety-like behavior in LDT. Fluoxetine normalized the increased expression of TLR4 and reversed behavioral despair, social avoidance, as well as anxiety-like behavior induced by CSDS. However, directly blocking TLR4, by using either TLR4 inhibitor TAK-242 or knockout of TLR4, only inhibited behavioral despair, but not social avoidance or anxiety-like behavior induced by CSDS. CONCLUSIONS These results demonstrate a specific modulating role of TLR4 in behavioral despair induced by CSDS and suggest that TAK-242 may be a beneficial treatment for patients with behavioral despair.
Collapse
Affiliation(s)
- Ke Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Juntao Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yawei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaqing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
da Costa Daniele TM, de Bruin PFC, de Matos RS, de Bruin GS, Maia Chaves C, de Bruin VMS. Exercise effects on brain and behavior in healthy mice, Alzheimer's disease and Parkinson's disease model-A systematic review and meta-analysis. Behav Brain Res 2020; 383:112488. [PMID: 31991178 DOI: 10.1016/j.bbr.2020.112488] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
This systematic review and meta-analysis examines how exercise modifies brain and behavior in healthy mice, dementia (D) and Parkinson disease (PD) models. A search was performed on the Medline and Scopus electronic databases (2008-2019). Search terms were "mice", "brain", "treadmill", "exercise", "physical exercise". In the total, 430 were found but only 103 were included. Animals n = 1,172; exercised 4-8 weeks (Range 24 h to 32 weeks), 60 min/day (Range 8-120 min per day), and 10/12 m/min (Range 0.2 m/min to 36 m/min). Hippocampus, cerebral cortex, striatum and whole brain were more frequently investigated. Exercise improved learning and memory. Meta-analysis showed that exercise increased: cerebral BDNF in health (n = 150; z = 5.8, CI 3.43-12.05; p < 0.001 I2 = 94.3 %), D (n = 124; z = 4.18, CI = 2.22-9.12; p < 0.001; I2 = 93.7 %) and PD (n = 16 z = 4.26, CI 5.03-48.73 p < 0.001 I2 = 94.8 %). TrkB improved in health (n = 84 z = 5.49, CI 3.8-17.73 p < 0.001, I2 = 0.000) and PD (n = 22; z = 3.1, CI = 2.58-67.3, p < 0.002 I2 = 93.8 %). Neurogenesis increased in health (n = 68; z = 7.08, CI 5.65-21.25 p < 0.001; I2 17.58) and D model (n = 116; z = 4.18, CI 2.22-9.12 p < 0.001 I2 93.7 %). Exercise augmented amyloid clearance (n = 166; z = 7.51 CI = 4.86-14.85, p < 0.001 I2 = 58.72) and reduced amyloid plaques in D models (n = 49; z = 4.65, CI = 3.94-15.3 p < 0.001 I2 = 0.000). In conclusion, exercise improved brain and behavior, neurogenesis in healthy and dementia models, reduced toxicity and cerebral amyloid. Evidence regarding inflammation, oxidative stress and energy metabolism were scarce. Studies examining acute vs chronic exercise, extreme training and the durability of exercise benefit were rare. Vascular or glucose metabolism changes were seldom reported.
Collapse
Affiliation(s)
- Thiago Medeiros da Costa Daniele
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil; Universidade de Fortaleza (UNIFOR).
| | - Pedro Felipe Carvalhedo de Bruin
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil.
| | - Robson Salviano de Matos
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil.
| | - Gabriela Sales de Bruin
- Universidade Federal do Ceará (UFC), Brazil; Department of Neurology, Washington University in St Louis, United States.
| | - Cauby Maia Chaves
- Universidade Federal do Ceará (UFC), Brazil; Departamento de Clínica Odontológica, UFC, Brazil.
| | - Veralice Meireles Sales de Bruin
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil.
| |
Collapse
|
8
|
Antidepressive Effects of Kamishoyosan through 5-HT1AReceptor and PKA-CREB-BDNF Signaling in the Hippocampus in Postmenopausal Depression-Model Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9475384. [PMID: 31781286 PMCID: PMC6874869 DOI: 10.1155/2019/9475384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Females are well known to suffer disproportionately more than males from stress-related neuropsychiatric disorders, especially during perimenopausal and postmenopausal periods. In addition to a decline in serum estradiol levels, environmental stress and social stress likely contribute to the development of neuropsychiatric symptoms in perimenopausal and postmenopausal women. Kamishoyosan (KSS) is a traditional Japanese Kampo medicine, composed of a specified mixture of 10 crude compounds derived from plant sources, widely used for various neuropsychiatric symptoms in perimenopausal and postmenopausal women. However, the molecular mechanisms underlying KSS-mediated attenuation of neuropsychological symptoms and stress-response behaviors in perimenopausal and postmenopausal women remain unknown. In the present study, we first established a mouse model for postmenopausal depression-like signs using chronic water-immersion and restraint-stressed ovariectomized (OVX) mice to investigate the underlying molecular mechanism of KSS. We found that continuous administration of KSS to these mice normalized the activation of the hypothalamic-pituitary-adrenal (HPA) axis, ameliorated stress-induced depressive behavior, and prevented a decrease of neurogenesis in the hippocampus. As previous studies have implicated dysfunction of the hippocampal 5-HT1A receptor (5-HT1AR) in depressive disorders, we also evaluated the effect of KSS on 5-HT1AR expression and the protein kinase A- (PKA-) cAMP response element-binding- (CREB-) brain-derived neurotrophic factor (BDNF) signaling pathway in the hippocampus in this model. The level of 5-HT1AR in the hippocampus decreased in chronic stress-exposed OVX mice, while KSS treatment normalized the stress-induced decrease in 5-HT1AR expression in the hippocampus of chronic stress-exposed OVX mice. Furthermore, we found that KSS treatment upregulated the expression levels of phosphorylated PKA (p-PKA), phosphorylated CREB (p-CREB), and BDNF in the hippocampus in chronic stress-exposed OVX mice. These results suggest that KSS improves neuropsychiatric symptoms through 5-HT1AR and PKA-CREB-BDNF signaling in the hippocampus in postmenopausal women.
Collapse
|
9
|
Xian Y, Ip S, Li H, Qu C, Su Z, Chen J, Lin Z. Isorhynchophylline exerts antidepressant‐like effects in mice
via
modulating neuroinflammation and neurotrophins: involvement of the PI3K/Akt/GSK‐3β signaling pathway. FASEB J 2019; 33:10393-10408. [DOI: 10.1096/fj.201802743rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yan‐Fang Xian
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
- Brain Research CenterSchool of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
| | - Siu‐Po Ip
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
- Brain Research CenterSchool of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
| | - Hui‐Qin Li
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
| | - Chang Qu
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
| | - Zi‐Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese MedicineMathematical Engineering Academy of Chinese MedicineGuangzhou University of Chinese Medicine Guangzhou China
| | - Jian‐Nan Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese MedicineMathematical Engineering Academy of Chinese MedicineGuangzhou University of Chinese Medicine Guangzhou China
| | - Zhi‐Xiu Lin
- School of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
- Brain Research CenterSchool of Chinese MedicineFaculty of MedicineThe Chinese University of Hong Kong Hong Kong China
- Hong Kong Institute of Integrative MedicineThe Chinese University of Hong Kong Hong Kong China
| |
Collapse
|
10
|
Wang L, Li XX, Chen X, Qin XY, Kardami E, Cheng Y. Antidepressant-Like Effects of Low- and High-Molecular Weight FGF-2 on Chronic Unpredictable Mild Stress Mice. Front Mol Neurosci 2018; 11:377. [PMID: 30369869 PMCID: PMC6194172 DOI: 10.3389/fnmol.2018.00377] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
The occurrence of depressive disorder has long been attributed to changes in monoamines, with the focus of drug treatment strategies being to change the effectiveness of monoamines. However, the success achieved by changing these processes is limited and further stimulates the exploration of alternative mechanisms and treatments. Fibroblast growth factor 2 (FGF-2), which occurs in a high-molecular weight (HMW) and low-molecular weight (LMW) form, is a potent developmental modulator and nervous system regulator that has been suggested to play an important role in various psychiatric disorders. In this study, we investigated the antidepressant effects of HMW and LMW FGF-2 on depression induced by chronic stress. Both peripheral LMW and HMW FGF-2 attenuated the depression-like behaviors in chronic unpredictable mild stress (CUMS) mice to a similar extent, as determined by the forced swimming, tail suspension, and sucrose preference tests. We then showed that CUMS-induced oxidative stresses in mice were inhibited by FGF-2 treatments both in central and peripheral. We also showed that both forms of FGF-2 increased the phosphorylation of ERK and AKT, increased Bcl-2 expression and inhibited caspase-3 activation in CUMS mice. Interestingly, HMW FGF-2 enhanced the activity of the brain-derived neurotrophic factor (BDNF) to a greater extent than did LMW FGF-2 in the hippocampus. Taken together, these results suggest that depressive symptoms can be relieved by administering different forms of FGF-2 peripherally in a CUMS-induced depression model through a similar antidepressant signaling pathway, therefore suggesting a potential clinical use for FGF-2 as a treatment for depression.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xi-Xi Li
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xi Chen
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiao-Yan Qin
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
11
|
Effects of harmane during treadmill exercise on spatial memory of restraint-stressed mice. Physiol Behav 2018; 194:239-245. [PMID: 29885919 DOI: 10.1016/j.physbeh.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/07/2018] [Accepted: 06/06/2018] [Indexed: 11/23/2022]
|
12
|
Leem YH, Kato M, Chang H. Regular exercise and creatine supplementation prevent chronic mild stress-induced decrease in hippocampal neurogenesis via Wnt/GSK3β/β-catenin pathway. J Exerc Nutrition Biochem 2018; 22:1-6. [PMID: 30149419 PMCID: PMC6058068 DOI: 10.20463/jenb.2018.0009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Chronic stress can lead to mood-related psychomotor behaviors such as despair. Decreased hippocampal neurogenesis has been observed in patients with depression and in animal models of depression. Exercise enhances the population of the new born cells in the dentate gyrus (DG). A few studies have demonstrated that creatine has antidepressant effects in humans. However, the mechanism underpinning these effects is poorly understood. Therefore, we examined whether regular exercise and/or creatine was closely associated with the activity of the Wnt/GSK3β/β-catenin pathway in the hippocampal DG. METHODS Mice were subjected to 4 weeks of chronic mild stress starting a week prior to the start of a 4-week protocol of treadmill running and creatine supplementation. Tail suspension (TST) and forced swimming tests (FST) were carried out 2 days after the final treadmill running session. Immunohistochemical and western blot analyses were conducted to evaluate hippocampal neurogenesis, GSK3β activity, and nuclear β-catenin protein levels in the DG. Furthermore, Wnt signaling antagonism in the DG using stereotaxic injection was performed. RESULTS Chronic mild stress-induced increase in immobility in the TST and FST were restored by treadmill running and/or creatine supplementation. The number of Ki-67+ and doublecortin (DCX)+ cells were decreased by chronic stress, and this decline was reversed by the exercise and supplement regimen, along with the changes in GSK3β activity and nuclear β-catenin protein levels in the DG. Local antagonism of DG Wnt signaling caused an increase in immobility even 5 days after injection with C59. CONCLUSION Regular exercise combined with creatine supplementation had a greater effect on hippocampal neurogenesis via the Wnt/GSK3β/β-catenin pathway activation compared with each treatment in chronic mild stress-induced behavioral depression.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Human Movement Science, Seoul Women’s University, SeoulRepublic of Korea
| | - Morimasa Kato
- Department of Health and Nutrition, Yonezawa Nutrition University of Yamagata Prefecture, YonezawaJapan
| | - Hyukki Chang
- Department of Human Movement Science, Seoul Women’s University, SeoulRepublic of Korea
| |
Collapse
|
13
|
Voluntary running influences the efficacy of fluoxetine in a model of postpartum depression. Neuropharmacology 2018; 128:106-118. [DOI: 10.1016/j.neuropharm.2017.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
|
14
|
Leem YH. The potential role of exercise in chronic stress-related changes in AMPA receptor phenotype underlying synaptic plasticity. J Exerc Nutrition Biochem 2017; 21:11-15. [PMID: 29370668 PMCID: PMC6373914 DOI: 10.20463/jenb.2017.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/31/2017] [Indexed: 11/26/2022] Open
Abstract
[Purpose] Chronic stress can cause disturbances in synaptic plasticity, such as longterm potentiation, along with behavioral defects including memory deficits. One major mechanism sustaining synaptic plasticity involves the dynamics and contents of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in the central nervous system. In particular, chronic stress-induced disruption of AMPARs includes it abnormal expression, trafficking, and calcium conductance at glutamatergic synapses, which contributes to synaptic plasticity at excitatory synapses. Exercise has the effect of promoting synaptic plasticity in neurons. However, the contribution of exercise to AMPAR behavior under chronic stressful maladaptation remains unclear. [Methods] The present article reviews the information about the chronic stress-related synaptic plasticity and the role of exercise from the previous-published articles. [Results] AMPAR-mediated synaptic transmission is an important for chronic stress-related changes of synaptic plasticity, and exercise may at least partly contribute to these episodes. [Conclusion] The present article discusses the relationship between AMPARs and synaptic plasticity in chronic stress, as well as the potential role of exercise.
Collapse
|
15
|
Leem YH, Chang H. Arc/Arg3.1 protein expression in dorsal hippocampal CA1, a candidate event as a biomarker for the effects of exercise on chronic stress-evoked behavioral abnormalities. J Exerc Nutrition Biochem 2017; 21:45-51. [PMID: 29370673 PMCID: PMC5772070 DOI: 10.20463/jenb.2017.0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/16/2017] [Indexed: 12/19/2022] Open
Abstract
[Purpose] Chronic stress is a risk factor for behavioral deficits, including impaired memory processing and depression. Exercise is well known to have beneficial impacts on brain health. [Methods] Mice were forced to treadmill running (4-week) during chronic restraint stress (6h/21d), and then behavioral tests were conducted by Novel object recognition, forced swimming test: FST, sociality test: SI. Dissected brain was stained with anti-calbindin-d28k and anti-Arc antibodies. Also, mice were treated with CX546 intraperitoneally during chronic restraint stress, and behavioral tests were assessed using Morris water maze, FST, and SI. Dissected brain was stained with anti-Arc antibody. [Results] The current study demonstrated that chronic stress-induced impairment of memory consolidation and depression-like behaviors, along with the changes in calbindin-d28k and Arc protein levels in the hippocampal CA1 area, were attenuated by regular treadmill running. Further, prolonged ampakine treatment prevented chronic stress-evoked behavioral abnormalities and nuclear Arc levels in hippocampal CA1 neurons. Nuclear localization of Arc protein in hippocampal CA1 neurons, but not total levels, was correlated with behavioral outcome in chronically stressed mice in response to a regular exercise regimen. [Conclusion] These results suggest that nuclear levels of Arc are strongly associated with behavioral changes, and highlight the role of exercise acting through an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated mechanisms in a chronic stress-induced maladaptive condition.
Collapse
|
16
|
Yang XH, Song SQ, Xu Y. Resveratrol ameliorates chronic unpredictable mild stress-induced depression-like behavior: involvement of the HPA axis, inflammatory markers, BDNF, and Wnt/β-catenin pathway in rats. Neuropsychiatr Dis Treat 2017; 13:2727-2736. [PMID: 29138567 PMCID: PMC5667793 DOI: 10.2147/ndt.s150028] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Classic antidepressant drugs are modestly effective across the population and most are associated with intolerable side effects. Recently, numerous lines of evidence suggest that resveratrol (RES), a natural polyphenol, possesses beneficial therapeutic activity for depression. The aim of the present study was to explore whether RES exhibits an antidepressant-like effect in a depression model and to explore the possible mechanism. A depression model was established via chronic unpredictable mild stress (CUMS), after which the model rats in the RES and fluoxetine groups received a daily injection of RES or fluoxetine, respectively. The sucrose preference test, open field test, and forced swimming test were used to explore the antidepressant-like effects of RES. The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the plasma corticosterone concentration and hypothalamic mRNA expression of corticotrophin-releasing hormone. The plasma interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α) concentrations were measured by enzyme-linked immunosorbent assay. Hippocampal protein expression of brain-derived neurotrophic factor (BDNF) and the Wnt/β-catenin pathway were analyzed by western blot. The results showed that RES relieved depression-like behavior of CUMS rats, as indicated by the increased sucrose preference and the decreased immobile time. Rats that received RES treatment exhibited reduced plasma corticosterone levels and corticotrophin-releasing hormone mRNA expression in the hypothalamus, suggesting that the hyperactivity of the HPA axis in CUMS rats was reversed by RES. Moreover, after RES treatment, the rats exhibited increased plasma IL-6, CRP, and TNF-α concentrations. Furthermore, RES treatment upregulated the hippocampal protein levels of BDNF and the relative ratio of p-β-catenin/β-catenin while downregulating the relative ratio of p-GSK-3β/GSK-3β. Our findings suggest that RES improved depressive behavior in CUMS rats by downregulating HPA axis hyperactivity, increasing BDNF expression and plasma IL-6, CRP, and TNF-α concentrations, and regulating the hippocampal Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xin-Hua Yang
- Department of Pharmacy, Hefei Eighth People's Hospital, Hefei
| | - Su-Qi Song
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei
| | - Yun Xu
- Faculty of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Tetratricopeptide repeat domain 9A modulates anxiety-like behavior in female mice. Sci Rep 2016; 6:37568. [PMID: 27869229 PMCID: PMC5116628 DOI: 10.1038/srep37568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022] Open
Abstract
Tetratricopeptide repeat domain 9A (TTC9A) expression is abundantly expressed in the brain. Previous studies in TTC9A knockout (TTC9A-/-) mice have indicated that TTC9A negatively regulates the action of estrogen. In this study we investigated the role of TTC9A on anxiety-like behavior through its functional interaction with estrogen using the TTC9A-/- mice model. A battery of tests on anxiety-related behaviors was conducted. Our results demonstrated that TTC9A-/- mice exhibited an increase in anxiety-like behaviors compared to the wild type TTC9A+/+ mice. This difference was abolished after ovariectomy, and administration of 17-β-estradiol benzoate (EB) restored this escalated anxiety-like behavior in TTC9A-/- mice. Since serotonin is well-known to be the key neuromodulator involved in anxiety behaviors, the mRNA levels of tryptophan hydroxylase (TPH) 1, TPH2 (both are involved in serotonin synthesis), and serotonin transporter (5-HTT) were measured in the ventromedial prefrontal cortex (vmPFC) and dorsal raphe nucleus (DRN). Interestingly, the heightened anxiety in TTC9A-/- mice under EB influence is consistent with a greater induction of TPH 2, and 5-HTT by EB in DRN that play key roles in emotion regulation. In conclusion, our data indicate that TTC9A modulates the anxiety-related behaviors through modulation of estrogen action on the serotonergic system in the DRN.
Collapse
|
18
|
Corey S, Lippert T, Borlongan CV. Translational lab-to-clinic hurdles in stem cell therapy. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0058-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
19
|
Seo H, Park CH, Choi S, Kim W, Jeon BD, Ryu S. Effects of voluntary exercise on apoptosis and cortisol after chronic restraint stress in mice. J Exerc Nutrition Biochem 2016; 20:16-23. [PMID: 27757383 PMCID: PMC5067423 DOI: 10.20463/jenb.2016.09.20.3.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
[Purpose] To determine whether voluntary exercise (wheel running) has the potential of relieving stress. [Methods] In this study, restraint stress with or without voluntary wheel running was performed for mice housed in individual cages. A total of 21 ICR male mice were assigned into control (CON), restraint stress with voluntary exercise (RSVE), or restraint stress (RS) without voluntary exercise groups (n = 7 each). [Results] No significant difference in body weight increase was found among the three groups, although CON and RS groups had a tendency of having smaller body weight increase compared to the RSVE group. No significant difference in the expression level of liver heat shock protein 70, Bcl-2, or p53 was found among the three groups. However, caspase-3 protein level in RS group was significantly higher than that in the other two groups. Blood cortisol concentration in RS was higher (p < 0.05) than that in RSVE or CON group. It was the lowest (p < 0.05) in the RSVE group. [Conclusion] Our findings suggest that apoptosis caused by chronic restraint stress might be suppressed by voluntary exercise in mice.
Collapse
Affiliation(s)
- Hyobin Seo
- Department of Leisure Sports, Kyungpook National University, Sangju Republic of Korea
| | - Chun-Hyung Park
- Department of Leisure Sports, Kyungpook National University, Sangju Republic of Korea
| | - Seokrip Choi
- Department of Sports Rehabilitation, Daegu Health College, Daegu Republic of Korea
| | - Woocheol Kim
- Department of Sports Rehabilitation, Daegu Health College, Daegu Republic of Korea
| | - Byung-Duk Jeon
- Department of Physical Education Leisure, Suseong College, Daegu Republic of Korea
| | - Seungpil Ryu
- Department of Leisure Sports, Kyungpook National University, Sangju Republic of Korea
| |
Collapse
|
20
|
Kim DM, Leem YH. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction. Neuroscience 2016; 324:271-85. [PMID: 26975895 DOI: 10.1016/j.neuroscience.2016.03.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 01/30/2023]
Abstract
Chronic stress has a detrimental effect on neurological insults, psychiatric deficits, and cognitive impairment. In the current study, chronic stress was shown to impair learning and memory functions, in addition to reducing in hippocampal Adenosine monophosphate-activated protein kinase (AMPK) activity. Similar reductions were also observed for brain-derived neurotrophic factor (BDNF), synaptophysin, and post-synaptic density-95 (PSD-95) levels, all of which was counter-regulated by a regime of regular and prolonged exercise. A 21-day restraint stress regimen (6 h/day) produced learning and memory deficits, including reduced alternation in the Y-maze and decreased memory retention in the water maze test. These effects were reversed post-administration by a 3-week regime of treadmill running (19 m/min, 1 h/day, 6 days/week). In hippocampal primary culture, phosphorylated-AMPK (phospho-AMPK) and BDNF levels were enhanced in a dose-dependent manner by 5-amimoimidazole-4-carboxamide riboside (AICAR) treatment, and AICAR-treated increase was blocked by Compound C. A 7-day period of AICAR intraperitoneal injections enhanced alternation in the Y-maze test and reduced escape latency in water maze test, along with enhanced phospho-AMPK and BDNF levels in the hippocampus. The intraperitoneal injection of Compound C every 4 days during exercise intervention diminished exercise-induced enhancement of memory improvement during the water maze test in chronically stressed mice. Also, chronic stress reduced hippocampal neurogenesis (lower Ki-67- and doublecortin-positive cells) and mRNA levels of BDNF, synaptophysin, and PSD-95. Our results suggest that regular and prolonged exercise can alleviate chronic stress-induced hippocampal-dependent memory deficits. Hippocampal AMPK-engaged BDNF induction is at least in part required for exercise-induced protection against chronic stress.
Collapse
Affiliation(s)
- D-M Kim
- Department of Society of Sports & Leisure Studies, Wonkwang University, 460 Iksandea-ro, Iksan, Jeonbuk, Republic of Korea
| | - Y-H Leem
- Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Women's University, Seoul 158-710, Republic of Korea.
| |
Collapse
|
21
|
Borlongan CV, Jolkkonen J, Detante O. The future of stem cell therapy for stroke rehabilitation. FUTURE NEUROLOGY 2015; 10:313-319. [PMID: 26997918 DOI: 10.2217/fnl.15.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612 USA
| | - Jukka Jolkkonen
- University of Eastern Finland, Institute of Clinical Medicine - Neurology, Yliopistonranta 1 C, 70210 Kuopio, Finland
| | - Olivier Detante
- University Hospital of Grenoble, Stroke Unit, Department of Neurology, CS 10217, 38043 Grenoble, France; Inserm, U 836, BP 170, 38042 Grenoble, France; University Grenoble Alpes, Grenoble Institute of Neurosciences, BP 170, 38042 Grenoble, France
| |
Collapse
|