1
|
Garcia MR, Ferreres F, Mineiro T, Videira RA, Gil-Izquierdo Á, Andrade PB, Seabra V, Dias-da-Silva D, Gomes NGM. Mexican calea (Calea zacatechichi Schltdl.) interferes with cholinergic and dopaminergic pathways and causes neuroglial toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118915. [PMID: 39389391 DOI: 10.1016/j.jep.2024.118915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of "Mexican calea" (Calea zacatechichi Schltdl.) in ritualistic ceremonies, due to its dream-inducing effects, was until recently limited to indigenous communities in Mexico. However, the plant has recently gained popularity in Western societies being commonly used in recreational settings. Despite the traditional and recreational uses, mechanisms underlying its reported oneirogenic effects remain unknown, with no data available on its neurotoxic profile. AIM OF THE STUDY The scarcity of toxicological data and the unknown role of major neurotransmitter systems in the dream-inducing properties of the plant prompted us to investigate which neurotransmitters might be affected upon its consumption, as well as the potential cytotoxic effects on neurons and microglial cells. Furthermore, we aimed to explore a relationship between the recorded effects and specific constituents. MATERIALS AND METHODS Effects on cholinergic and monoaminergic pathways were investigated using enzymatic assays, with the latter also being conducted in neuronal SH-SY5Y cells along with the impact on glutamate-induced excitotoxicity. Investigation of the neurotoxic profile was approached in neuronal SH-SY5Y and microglial BV-2 cells, evaluating effects on metabolic performance and membrane integrity using MTT and LDH leakage assays, respectively. Potential interference with oxidative stress was monitored by assessing free radical's levels, as well as 5-lipoxygenase mediated lipid peroxidation. Phenolic constituents were identified through HPLC-DAD-ESI(Ion Trap)MSn analysis. RESULTS Based on the significant inhibition upon acetylcholinesterase (p < 0.05) and tyrosinase (IC50 = 60.87 ± 7.3 μg/mL; p < 0.05), the aqueous extract obtained from the aerial parts of C. zacatechichi interferes with the cholinergic and dopaminergic systems, but has no impact against monoamine oxidase A. Additionally, a notable cytotoxic effect was observed in SH-SY5Y and BV-2 cells at concentrations as low as 125 and 500 μg/mL (p < 0.05), respectively, LDH leakage suggesting apoptosis may occur at these concentrations, with necroptosis observed at higher ones. Despite the neurocytotoxic profile, these effects appear to be independent of radical stress, as the C. zacatechichi extract scavenged nitric oxide and superoxide radicals at concentrations as low as 62.5 μg/mL, significantly inhibiting also 5-lipoxygenase (IC50 = 72.60 ± 7.3 μg/mL; p < 0.05). Qualitative and quantitative analysis using HPLC-DAD-ESI(Ion Trap)MSn enabled the identification of 28 constituents, with 24 of them being previously unreported in this species. These include a series of dicaffeoylquinic, caffeoylpentoside, and feruloylquinic acids, along with 8 flavonols not previously known to occur in the species, mainly 3-O-monoglycosylated derivatives of quercetin, kaempferol, and isorhamnetin. CONCLUSIONS Our findings regarding the neuroglial toxicity elicited by C. zacatechichi emphasize the necessity for a thorough elucidation of the plant's toxicity profile. Additionally, evidence is provided that the aerial parts of the plant inhibit both acetylcholinesterase and tyrosinase, potentially linking its psychopharmacological effects to the cholinergic and dopaminergic systems, with an apparent contribution from specific phenolic constituents previously unknown to occur in the species. Collectively, our results lay the groundwork for a regulatory framework on the consumption of C. zacatechichi in recreational settings and contribute to elucidating previous contradictory findings regarding the mechanisms underlying the dream-inducing effects of the plant.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal; UCIBIO, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Federico Ferreres
- Molecular Recognition and Encapsulation (REM) Group, Department of Food Technology and Nutrition, Universidad Católica de Murcia, 30107, Murcia, Spain.
| | - Tiago Mineiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100, Murcia, Spain.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Vítor Seabra
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Diana Dias-da-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal; UCIBIO, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal; LAQV/REQUIMTE, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Quiñonez-Bastidas GN, Navarrete A. Mexican Plants and Derivates Compounds as Alternative for Inflammatory and Neuropathic Pain Treatment-A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050865. [PMID: 33923101 PMCID: PMC8145628 DOI: 10.3390/plants10050865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/17/2023]
Abstract
Despite the availability of many anti-pain drugs, in the form of NSAIDs, steroids, gabapentinoids, opioids, and antidepressants, in this study we address the natural compounds belonging to the group of Mexican medicinal plants or "Mexican folk medicine", used for pain management in Mexico. Our interest in this subject is due to the growing idea that "natural is harmless" and to the large number of side effects exhibited in pharmacotherapy. The objective of this review was to document the scientific evidence about Mexican medicinal plants and their derivatives used for inflammatory and neuropathic pain treatment, as well as the mechanisms of action implicated in their antinociceptive effects, their possible adverse effects, and the main pharmacological aspects of each plant or compound. Our data review suggested that most studies on Mexican medicinal plants have used inflammatory experimental models for testing. The anti-pain properties exerted by medicinal plants lack adverse effects, and their toxicological assays report that they are safe to consume; therefore, more studies should be performed on preclinical neuropathic pain models. Moreover, there is no convincing evidence about the possible mechanisms of action involved in the anti-pain properties exerted by Mexican plants. Therefore, the isolation and pharmacological characterization of these plant derivatives' compounds will be important in the design of future preclinical studies.
Collapse
Affiliation(s)
| | - Andrés Navarrete
- Correspondence: (G.N.Q.-B.); (A.N.); Tel.: +52-5556225291 (A.N.)
| |
Collapse
|
3
|
Martinez-Mota L, Cruz-Tavera A, Dorantes-Barrón AM, Arrieta-Báez D, Ramírez-Salado I, Cruz-Aguilar MA, Mayagoitia-Novales L, Cassani J, Estrada-Reyes R. Calea zacatechichi Schltdl. (Compositae) produces anxiolytic- and antidepressant-like effects, and increases the hippocampal activity during REM sleep in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113316. [PMID: 32866569 DOI: 10.1016/j.jep.2020.113316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calea zacatechichi is a plant with an extensive popular and ritual use in Mexico. In healthy volunteers, it induces well-being and tranquility senses, and facilitates superficial stages of sleep. However, anxiolytic, and antidepressant-like effects and changes on the sleep-waking stages have not been explored. AIM To determine anxiolytic and antidepressant-like effects of an aqueous extract of C. zacatechichi (CZ) in rodents and to analyze their effects on hippocampal activity in the rat sleep-waking cycle. MATERIAL AND METHODS CZ anxiolytic- and antidepressant-like effects were evaluated in several mice and rat behavioral paradigms. CZ effects on temporal distribution of sleep were described, and hippocampus EEG frequency patterns were analyzed during the sleep-waking cycle; absolute and relative powers were analyzed during Rapid Eye Movements (REM) and non-REM sleep stages. CZ chemical analysis was performed by UPLC-ESI-MS. RESULTS CZ produced specific and robust anxiolytic- and antidepressant-like effects in mice and rats, similar to those of prototypical drugs, at doses ranging from 0.5 to 50 mg/kg. CZ at 100 mg/kg produced visible mild sedative effects in rats, associated with a significant increase in Slow Wave Sleep episodes during a 6 h recording, and enhanced fast frequencies of hippocampus (gamma-band:31-50 Hz) during REM sleep. CONCLUSION Results could support the well-being and tranquility senses reported by healthy consumers, and to explain the oneiric content during dreams and some improvements in cognitive processes described by consumers. Anxiolytic- and antidepressant-like effects of this species, reported for first time in this study could improve some aspects of mental health.
Collapse
Affiliation(s)
- Lucía Martinez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Adrián Cruz-Tavera
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Ana María Dorantes-Barrón
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Daniel Arrieta-Báez
- Instituto Politécnico Nacional, CNMN, Luis Enrique Erro S/n, Unidad Prof. Adolfo López Mateos, Gustavo A. Madero, 07738, Ciudad de México, Mexico
| | - Ignacio Ramírez-Salado
- Laboratorio de Cronobiología y Sueño, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Manuel Alejandro Cruz-Aguilar
- Laboratorio de Cronobiología y Sueño, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Lilian Mayagoitia-Novales
- Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Julia Cassani
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, 04960, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food Chem Toxicol 2020; 145:111708. [PMID: 32866514 DOI: 10.1016/j.fct.2020.111708] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Acacetin is a di-hydroxy and mono-methoxy flavone present in various plants, including black locust, Damiana, Silver birch. Literature information revealed that acacetin exhibits an array of pharmacological potential including chemopreventive and cytotoxic properties in cancer cell lines, prevents ischemia/reperfusion/myocardial infarction-induced cardiac injury, lipopolysaccharide (LPS), 1-methyl-4-phenyl pyridinium ion (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced neuroinflammation, LPS and sepsis-induced lung injury, rheumatoid and collagen-induced arthritis, inhibit the microbial growth, obesity, viral-mediated infections as well as hepatic protection. PURPOSE This review highlights the therapeutic potential of acacetin, with updated and comprehensive information on the biological sources, chemistry, and pharmacological properties along with the possible mechanism of action, safety aspects, and future research opportunities. STUDY DESIGN The information was retrieved from various search engines, including Pubmed, SciFinder, Science direct, Inxight:drugs, Google scholar, and Meta cyc. RESULT The first section of this review focuses on the detailed biological source of acacetin, chromatographic techniques used for isolation, chemical characteristics, the method for the synthesis of acacetin, and the available natural and synthetic derivatives. Subsequently, the pharmacological activities, including anti-cancer, anti-inflammatory, anti-viral, anti-microbial, anti-obesity, have been discussed. The pharmacokinetics data and toxicity profile of acacetin are also discussed. CONCLUSION Acacetin is a potent molecule reported for its strong anti-inflammatory and anti-cancer activity, however further scientific evidence is essential to validate its potency in disease models associated with inflammation and cancer. There is limited information available for toxicity profiling of acacetin; therefore, further studies would aid in establishing this natural flavone as a potent candidate for research studies at clinical setup.
Collapse
|
5
|
Safety of Aqueous Extract of Calea ternifolia Used in Mexican Traditional Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:7478152. [PMID: 31949470 PMCID: PMC6944969 DOI: 10.1155/2019/7478152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 11/18/2022]
Abstract
There is a trend to use medicinal plants for primary medical care or as dietary supplements; however, the safety of many of these plants has not been studied. The objective of this work was to determine the toxic effect of the aqueous extract of Calea ternifolia (C. zacatechichi), known popularly as “dream herb” in vivo and in vitro in order to validate its safety. In vivo, the extract had moderate toxicity on A. salina. In vitro, the extract induced eryptosis of 73% at a concentration of 100 μg·mL−1 and it inhibited CYP3A by 99% at a concentration of 375 μg/mL. After administering 8.5 mg/kg of C. ternifolia to rats, we found a reduction in platelets and leukocytes and an increase in urea and the liver enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). Histological analysis showed spongiform changes in the proximal tubules of renal tissue and a lymphoid infiltrate in liver tissue. This plant is used in the treatment of diabetes, and it is commercialized as a dietary supplement in several countries. Our results show renal and hepatic toxicity; therefore, more profound research on the toxicity of this plant is needed.
Collapse
|
6
|
Lima TC, de Jesus Souza R, da Silva FA, Biavatti MW. The genus Calea L.: A review on traditional uses, phytochemistry, and biological activities. Phytother Res 2018; 32:769-795. [PMID: 29464865 DOI: 10.1002/ptr.6010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Tamires Cardoso Lima
- Departamento de Farmácia, CCBS, Universidade Federal de Sergipe (UFS), São Cristóvão, SE, Brazil
| | - Rafaela de Jesus Souza
- Departamento de Ciências Farmacêuticas, CCS, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | - Maique Weber Biavatti
- Departamento de Ciências Farmacêuticas, CCS, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
7
|
Escandón-Rivera S, Pérez-Vásquez A, Navarrete A, Hernández M, Linares E, Bye R, Mata R. Anti-Hyperglycemic Activity of Major Compounds from Calea ternifolia. Molecules 2017; 22:molecules22020289. [PMID: 28216594 PMCID: PMC6155573 DOI: 10.3390/molecules22020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/28/2022] Open
Abstract
Demethylisoencecalin (1) and caleins A (4) and C (5) (3.16–31.6 mg/kg, p.o.), the major components from an infusion of Calea ternifolia controlled postprandial glucose levels during an oral sucrose tolerance test (OSTT, 3 g/kg) in normal and nicotinamide/streptozotocin (NA/STZ, 40/100 mg/kg) hyperglicemic mice. The effects were comparable to those of acarbose (5 mg/kg). During the isolation of 1, 4, and 5, four additional metabolites not previously reported for the plant, were obtained, namely 6-acetyl-5-hydroxy-2-methyl-2-hydroxymethyl-2H-chromene (3), herniarin (6), scoparone (7), and 4′,7-dimethylapigenin (8). In addition, the structure of calein C (5) was confirmed by X-ray analysis. Pharmacological evaluation of the essential oil of the species (31.6–316.2 mg/kg, p.o.) provoked also an important decrement of blood glucose levels during an OSTT. Gas chromatography coupled with mass spectrometry (GC-MS) analysis of the headspace solid phase microextraction (HS-SPME)-adsorbed compounds and active essential oil obtained by hydrodistillation revealed that chromene 1 was the major component (19.92%); sesquiterpenes represented the highest percentage of the essential oil content (55.67%) and included curcumene (7.10%), spathulenol (12.95%) and caryophyllene oxide (13.0%). A suitable High Performance Liquid Chromatography (HPLC) method for quantifying chromenes 1 and 6-hydroxyacetyl-5-hydroxy-2,2-dimethyl-2H-chromene (2) was developed and validated according to standard protocols.
Collapse
Affiliation(s)
- Sonia Escandón-Rivera
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Araceli Pérez-Vásquez
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Andrés Navarrete
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Mariana Hernández
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Edelmira Linares
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Robert Bye
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|