1
|
Bao H, Mao S, Hu X, Li L, Tao H, Zhou J, Xu L, Fang Y, Zhang Y, Chu L. Exosomal miR-486 derived from bone marrow mesenchymal stem cells promotes angiogenesis following cerebral ischemic injury by regulating the PTEN/Akt pathway. Sci Rep 2024; 14:18086. [PMID: 39103424 PMCID: PMC11300871 DOI: 10.1038/s41598-024-69172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have been shown to promote angiogenesis after ischemic stroke, in which microRNAs (miRs) are believed to play an important role in exosome-mediated therapeutic effects, though the mechanism is still not clear. In this study, a series of molecular biological and cellular assays, both in vitro and in vivo, were performed to elucidate the role of exosomal miR-486 in angiogenesis following cerebral ischemic and its molecular mechanisms. Our results revealed that BMSC-Exos significantly improved neurological function and increased microvessel density in ischemic stroke rats. In vitro assays showed that BMSC-Exos promoted the proliferation, migration, and tube formation ability of oxygen-glucose deprivation/reoxygenation (OGD/R) injured rat brain microvascular endothelial cells (RBMECs). Importantly, BMSC-Exos increased the expression of miR-486 and phosphorylated protein kinase B (p-Akt) and down-regulated the protein level of phosphatase and tensin homolog (PTEN) in vivo and in vitro. Mechanistic studies demonstrated that transfection with miR-486 mimic enhanced RBMECs angiogenesis and increased p-Akt expression, while inhibited PTEN expression. On the other hand, the miR-486 inhibitor induced an opposite effect, which could be blocked by PTEN siRNA. It was thus concluded that exosomal miR-486 from BMSCs may enhance the functional recovery by promoting angiogenesis following cerebral ischemic injury, which might be related to its regulation of the PTEN/Akt pathway.
Collapse
Affiliation(s)
- Hangyang Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shihui Mao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaowei Hu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongmiao Tao
- Medical College, Jinhua Polytechnic, Jinhua, 321017, China
| | - Jie Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lanxi Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Fang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yani Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lisheng Chu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Elziny S, Crino PB. Vascularization in mTOR Mouse Mutants: An Effort Not in Vein. eNeuro 2023; 10:ENEURO.0122-23.2023. [PMID: 37479502 PMCID: PMC10368145 DOI: 10.1523/eneuro.0122-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023] Open
Abstract
Highlighted Research Paper: M. Dusing, C. L. LaSarge, A. White, L. G. Jerow, C. Gross and S. C. Danzer, "Neurovascular Development in Pten and Tsc2 Mouse Mutants."
Collapse
Affiliation(s)
- Soad Elziny
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, 21201 MD
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, 21201 MD
| |
Collapse
|
4
|
Dusing M, LaSarge CL, White A, Jerow LG, Gross C, Danzer SC. Neurovascular Development in Pten and Tsc2 Mouse Mutants. eNeuro 2023; 10:ENEURO.0340-22.2023. [PMID: 36759189 PMCID: PMC9953070 DOI: 10.1523/eneuro.0340-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway is linked to more than a dozen neurologic diseases, causing a range of pathologies, including excess neuronal growth, disrupted neuronal migration, cortical dysplasia, epilepsy and autism. The mTOR pathway also regulates angiogenesis. For the present study, therefore, we queried whether loss of Pten or Tsc2, both mTOR negative regulators, alters brain vasculature in three mouse models: one with Pten loss restricted to hippocampal dentate granule cells [DGC-Pten knock-outs (KOs)], a second with widespread Pten loss from excitatory forebrain neurons (FB-Pten KOs) and a third with focal loss of Tsc2 from cortical excitatory neurons (f-Tsc2 KOs). Total hippocampal vessel length and volume per dentate gyrus were dramatically increased in DGC-Pten knock-outs. DGC-Pten knock-outs had larger dentate gyri overall, however, and when normalized to these larger structures, vessel density was preserved. In addition, tests of blood-brain barrier integrity did not reveal increased permeability. FB-Pten KOs recapitulated the findings in the more restricted DGC-Pten KOs, with increased vessel area, but preserved vessel density. FB-Pten KOs did, however, exhibit elevated levels of the angiogenic factor VegfA. In contrast to findings with Pten, focal loss of Tsc2 from cortical excitatory neurons produced a localized increase in vessel density. Together, these studies demonstrate that hypervascularization is not a consistent feature of mTOR hyperactivation models and suggest that loss of different mTOR pathway regulatory genes exert distinct effects on angiogenesis.
Collapse
Affiliation(s)
- Mary Dusing
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH 45229
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH 45229
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45219
| | - Angela White
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Lilian G Jerow
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45219
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH 45229
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH 45229
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45219
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH 45229
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital, Cincinnati, OH 45229
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45219
| |
Collapse
|
5
|
The anti-angiogenesis mechanism of Geniposide on rheumatoid arthritis is related to the regulation of PTEN. Inflammopharmacology 2022; 30:1047-1062. [PMID: 35389123 DOI: 10.1007/s10787-022-00975-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease characterized by joint inflammation and pannus. The nascent pannus contributes to synovial hyperplasia, cartilage, and tissue damage in RA. This study aims to explore the therapeutic effect and potential mechanism of Geniposide (GE) on RA angiogenesis, involving the participation of phosphate and tension homology deleted on chromosome ten (PTEN) and downstream pathways. Clinical manifestations, synovial pathomorphology, microvessel density, and the level of angiogenesis-related factors were used to evaluate the therapeutic effect of GE on adjuvant-induced arthritis (AA) rats. The proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) indicate the degree of angiogenesis in vitro. Lentivirus over-expression of PTEN was employed to elucidate the potential mechanism. The results showed that GE improved the degree of arthritis and angiogenesis in AA rats. The expression of PTEN was decreased significantly in vivo and in vitro, and over-expression of PTEN improved the biological function of HUVECs to inhibit angiogenesis. GE inhibited the proliferation, migration, and tubule formation of HUVECs and plays an anti-angiogenesis role in vitro. Mechanism study showed that PTEN expression was increased and p-PI3K and p-Akt expression was decreased with GE treatment. It suggests that GE up-regulated the expression of PTEN and inhibited the activation of PI3K-Akt signal, which plays a role in inhibiting angiogenesis in RA in vivo and in vitro.
Collapse
|
6
|
TRAF6 Promoted Tumor Glycolysis in Non-Small-Cell Lung Cancer by Activating the Akt-HIF α Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3431245. [PMID: 34409101 PMCID: PMC8367595 DOI: 10.1155/2021/3431245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
TRAF6 has been reported to be associated with poor prognosis in non-small-cell lung cancer (NSCLC). However, its precise role in tumor development has not been elaborated. In the present study, the function and the mechanism by which TRAF6 contributes to development were intensively investigated. TRAF6 was found to be overexpressed in primary NSCLC tumor tissue and all tested cell lines. Knockdown of TRAF6 with shRNA substantially attenuated NSCLC cell proliferation and anchorage-independent growth. Moreover, tumor glycolysis, such as glucose consumption and lactate production, also significantly impaired. In TRAF6-deficient cells, hexokinase-2 expression was significantly reduced, which was caused by the decrease of HIF-1α transcriptional activity. Further investigations demonstrated that TRAF6 played an important role in the regulation of Akt activation, and exogenous overexpression of constitutively activated Akt substantially rescued glycolysis suppression in TRAF6 knockdown cells. The results of the xenograft model confirmed that downregulation of TRAF6 in NSCLC tumor cells dramatically restrained tumor growth in vivo. Taken together, our studies revealed the mechanism by which TRAF6 exerts its role in NSCLC development and suggested TRAF6 maybe was a promising candidate target for lung cancer prevention and therapy.
Collapse
|
7
|
Zhao J, Yin L, Jiang L, Hou L, He L, Zhang C. PTEN nuclear translocation enhances neuronal injury after hypoxia-ischemia via modulation of the nuclear factor-κB signaling pathway. Aging (Albany NY) 2021; 13:16165-16177. [PMID: 34114972 PMCID: PMC8266328 DOI: 10.18632/aging.203141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/29/2021] [Indexed: 11/25/2022]
Abstract
The occurrence of hypoxia-ischemia (HI) in the developing brain is closely associated with neuronal injury and even death. However, the underlying molecular mechanism is not fully understood. This study was designed to investigate phosphatase and tensin homolog (PTEN) nuclear translocation and its possible role in rat cortical neuronal damage following oxygen-glucose deprivation (OGD) in vitro. An in vitro OGD model was established using primary cortical neurons dissected from newborn Sprague-Dawley rats to mimic HI conditions. The PTENK13R mutant plasmid, which contains a lysine-to-arginine mutation at the lysine 13 residue, was constructed. The nuclei and cytoplasm of neurons were separated. Neuronal injury following OGD was evidenced by increased lactate dehydrogenase (LDH) release and apoptotic cell counts. In addition, PTEN expression was increased and the phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2) and activation of nuclear factor kappa B (NF-κB) were decreased following OGD. PTENK13R transfection prevented PTEN nuclear translocation; attenuated the effect of OGD on nuclear p-ERK1/2 and NF-κB, apoptosis, and LDH release; and increased the expression of several anti-apoptotic proteins. We conclude that PTEN nuclear translocation plays an essential role in neuronal injury following OGD via modulation of the p-ERK1/2 and NF-κB pathways. Prevention of PTEN nuclear translocation might be a candidate strategy for preventing brain injury following HI.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Linlin Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Lin Jiang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Li Hou
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Ling He
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Chunyan Zhang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| |
Collapse
|
8
|
He Z, Wu S, Lin J, Booth A, Rankin GO, Martinez I, Chen YC. Polyphenols Extracted from Chinese Hickory ( Carya cathayensis) Promote Apoptosis and Inhibit Proliferation through the p53-Dependent Intrinsic and HIF-1α-VEGF Pathways in Ovarian Cancer Cells. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:8615. [PMID: 33520293 PMCID: PMC7842596 DOI: 10.3390/app10238615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ovarian cancer is the second most common gynecologic cancer with an estimated 13,940 mortalities across the United States in 2020. Natural polyphenols have been shown to double the survival time of some cancer patients due to their anticancer properties. Therefore, the effect of polyphenols extracted from Chinese hickory seed skin Carya cathayensis (CHSP) on ovarian cancer was investigated in the present study. Cell viability results showed that CHSP is more effective in inhibiting ovarian cancer cells than normal ovarian cells, with the IC50 value for inhibition of cell proliferation of Ovarian cancer cells (OVCAR-3) being 10.33 ± 0.166 μg/mL for a 24 h treatment. Flow cytometry results showed that the apoptosis rate was significantly increased to 44.21% after 24 h treatment with 20 μg/mL of CHSP. Western blot analysis showed that CHSP induced apoptosis of ovarian cancer cells through a p53-dependent intrinsic pathway. Compared with control values, levels of VEGF excreted by OVCAR-3 cancer cells were reduced to 7.87% with a 40 μg/mL CHSP treatment. Consistent with our previous reports, CHSP inhibits vascular endothelial growth factor (VEGF) secretion by regulating the HIF-1α-VEGF pathway. In addition, we also found that the inhibitory effect of CHSP on ovarian cancer is related to the up-regulation of Phosphatase and tension homolog (PTEN) and down-regulation of nuclear factor kappa-B (NF-kappa B). These findings provide some evidence of the anti-ovarian cancer properties of CHSP and support the polyphenols as potential candidates for ovarian cancer adjuvant therapy.
Collapse
Affiliation(s)
- Zhiping He
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Shaozhen Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Ju Lin
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Ashley Booth
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Gary O’Neal Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology & Cell Biology and WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Yi Charlie Chen
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| |
Collapse
|
9
|
Chen H, Jing Y, Xu Z, Yang D, Ju S, Guo Y, Tian H, Xue L. Upregulation of C Terminus of Hsc70-Interacting Protein Attenuates Apoptosis and Procoagulant Activity and Facilitates Brain Repair After Traumatic Brain Injury. Front Neurosci 2020; 14:925. [PMID: 33013306 PMCID: PMC7506102 DOI: 10.3389/fnins.2020.00925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) could highly induce coagulopathy through breaking the dynamic balance between coagulation and fibrinolysis systems, which may be a major contributor to the progressive secondary injury cascade that occurs after TBI. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibition is reported to exert neuroprotection in TBI, making it a potential regulatory target involved in TBI-induced coagulation disorder. PTEN level is controlled in a major way by E3 ligase-mediated degradation through the ubiquitin-proteasome system. The C terminus of Hsc70-interacting protein (CHIP) has been shown to regulate proteasomal degradation and ubiquitination level of PTEN. In the present study, CHIP was overexpressed and knocked down in mouse brain microvascular endothelial cells (bEnd.3) and tissues during the early phase of TBI. In vitro cell proliferation, cell apoptosis, migration capacity, and invasion capacity were determined. The changes of procoagulant and apoptosis molecules after TBI were also detected as well as the micrangium density and blood-brain barrier permeability after in vivo TBI. In vitro results demonstrated that CHIP overexpression facilitated bEnd.3 cell proliferation, migration, and invasion and downregulated cell apoptosis and the expressions of procoagulant molecules through promoting PTEN ubiquitination in a simulated TBI model with stretch-induced injury treatment. In vivo experiments also demonstrated that CHIP overexpression suppressed post-TBI apoptosis and procoagulant protein expressions, as well as increased microvessel density, reduced hemorrhagic injury, and blood-brain barrier permeability. These findings suggested that the upregulation of CHIP may attenuate apoptosis and procoagulant activity, facilitate brain repair, and thus exerts neuroprotective effects in TBI.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yao Jing
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhiming Xu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Dianxu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shiming Ju
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yan Guo
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hengli Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Lixia Xue
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
10
|
Du J, Liang Y, Li J, Zhao JM, Wang ZN, Lin XY. Gastric Cancer Cell-Derived Exosomal microRNA-23a Promotes Angiogenesis by Targeting PTEN. Front Oncol 2020; 10:326. [PMID: 32232005 PMCID: PMC7082307 DOI: 10.3389/fonc.2020.00326] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Hypoxia-exposed lung cancer-released exosomal microRNA-23a (miR-23a) has been shown to enhance angiogenesis as well as vascular permeability, contributing to the close correlation between exosomal miR-23a and tumorigenesis. The current study aimed to investigate whether gastric cancer (GC) cell-derived exosomal miR-23a could induce angiogenesis and to elucidate the potential mechanisms associated with the process. Differentially expressed miRNAs in GC were initially screened from the Gene Expression Omnibus database. Target genes were selected following miRNA-mRNA prediction and subsequently verified by dual luciferase reporter assay. RT-qPCR was conducted to detect miR-23a and PTEN expression in GC tissues, cells and exosomes. Human umbilical venous endothelial cells (HUVECs) were co-cultured with GC cell-derived exosomes to assess the angiogenesis mediated by exosomes in vitro. Additionally, PTEN was overexpressed in HUVECs to analyze the mechanism by which miR-23a regulates angiogenesis. miR-23a was highly expressed in GC tissues and cells and GC cell-derived exosomes. Angiogenesis was promoted by the co-culture of HUVECs and GC cells-derived exosomes, as evidenced by the increased expression of VEGF but decreased expression of TSP-1. PTEN was targeted by miR-23a and was lowly expressed in GC tissues. In a co-culture system, miR-23a carried by GC cells-derived exosomes promoted angiogenesis via the repression of PTEN. Collectively, GC cell-derived exosomal miR-23a could promote angiogenesis and provide blood supply for growth of GC cells. This study contributes to advancement of miRNA-targeted therapeutics.
Collapse
Affiliation(s)
- Jiang Du
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yuan Liang
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Ji Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jin-Ming Zhao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xu-Yong Lin
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
11
|
He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J, Wu X. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics 2019; 9:8206-8220. [PMID: 31754391 PMCID: PMC6857047 DOI: 10.7150/thno.37455] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/14/2019] [Indexed: 12/19/2022] Open
Abstract
Background: By providing oxygen, nutrients and metastatic conduits, tumour angiogenesis is essential for cancer metastasis. Cancer cell-secreted microRNAs can be packaged into exosomes and are implicated in different aspects of tumour angiogenesis. However, the underlying mechanisms are incompletely understood. Methods: The GEPIA database and in situ hybridization assay were used to analyse expression of miR-205 in ovarian tissues. Immunohistochemistry was performed to examine the relationship between miR-205 and microvessel density. Expression of circulating miR-205 was evaluated by RT-PCR and GEO database analysis. Co-culture and exosome labelling experiments were performed to assess exosomal miR-205 transfer from ovarian cancer (OC) cells to endothelial cells ECs. Exosome uptake assays were employed to define the cellular pathways associated with the endocytic uptake of exosomal miR-205. The role of exosomal miR-205 in angiogenesis was further investigated in vivo and in vitro. Western blotting and rescue experiments were applied to detect regulation of the PTEN-AKT pathway by exosomal miR-205 in ECs. Results: miR-205 was up-regulated in OC tissues, and high expression of miR-205 was associated with metastatic progression in OC patients. Moreover, miR-205 was highly enriched in cancer-adjacent ECs, and up-regulation of miR-205 correlated positively with high microvessel density in OC patients. Importantly, miR-205 was markedly enriched in the serum of OC patients, and a high level of miR-205 in circulating exosomes was associated with OC metastasis. In addition, OC-derived miR-205 was secreted into the extracellular space and efficiently transferred to adjacent ECs in an exosome-dependent manner, and the lipid raft-associated pathway plays an important role in regulating uptake of exosomal miR-205. Exosomal miR-205 from OC cells significantly promoted in vitro angiogenesis and accelerated angiogenesis and tumour growth in a mouse model. Furthermore, we found that exosomal miR-205 induces angiogenesis via the PTEN-AKT pathway. Conclusion: These findings demonstrate an exosome-dependent mechanism by which miR-205 derived from cancer cells regulates tumour angiogenesis and implicate exosomal miR-205 as a potential therapeutic target for OC.
Collapse
|
12
|
Zhang H, Wang P, Zhang X, Zhao W, Ren H, Hu Z. SDF1/CXCR7 Signaling Axis Participates in Angiogenesis in Degenerated Discs via the PI3K/AKT Pathway. DNA Cell Biol 2019; 38:457-467. [PMID: 30864829 DOI: 10.1089/dna.2018.4531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Degenerative disc disease (DDD) is the main cause of low back pain, and the ingrowth of new blood vessels is one of its pathological features. The stromal cell-derived factor 1 (SDF1)/CXCR7 signaling axis plays a role in these physiological and pathological activities. The aims of this study were to explore whether this signaling axis participates in the angiogenesis of degenerated intervertebral discs (IVDs) and to define its underlying mechanism. In this study, we cocultured human nucleus pulposus cells (NPCs) and vascular endothelial cells (VECs) and regulated the expression of SDF1/CXCR7 to investigate the effect of VEC angiogenesis by NPCs. The results revealed that angiogenesis was enhanced with increased SDF1 and that angiogenesis was weakened with the inhibition of CXCR7. We found that PI3K/AKT was involved in the downstream pathway in the coculture. VEC angiogenesis induction by NPCs was enhanced with an increase in pAKT or a decrease in PTEN. We conclude that the SDF1/CXCR7 signaling axis plays a role in the angiogenesis of degenerated IVD through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Hanxiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Peng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Wenrui Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Honglei Ren
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zhenming Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|