1
|
Kim S, Jang S, Lee O. Muscle structure assessment using synchrotron radiation X-ray micro-computed tomography in murine with cerebral ischemia. Sci Rep 2024; 14:26825. [PMID: 39501018 PMCID: PMC11538359 DOI: 10.1038/s41598-024-78324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Muscles are crucial for balance and walking, activities which depend specifically on the lower extremity muscles. Therefore, the evaluation of stroke induced atrophy and paralysis is essential; however, determining the extent of damage in the days after its occurrence remains challenging. In this study, we evaluated ischemic stroke-induced soleus muscle damage in gerbils using synchrotron radiation X-ray micro-computed tomography (SR-µCT), comparing a control group (n = 3), animals 7 days after stroke (7 d, n = 3), and animals 14 days after stroke (14 d, n = 3). The left muscle was paralyzed, whereas the right muscle was not. Subsequently, we quantified the assessment by segmenting the soleus muscle based on the extracellular space/matrix and fiber region to determine the degree of damage. The muscle fiber-to-extracellular space/matrix ratio were significantly damaged due to paralysis on the left side (control vs. 14 d, P = 0.040). Muscle area was significantly different at 14 d between the left and right sides (P = 0.010). Additionally, the left local fascicle surface area, thickness, global pennation angle, and local fascicle angle were significantly different between the control and 14 d groups (P = 0.002, P = 0.007, P = 0.005, and P = 0.014 respectively). These findings underscore the potential of post-stroke animal studies in improving rehabilitation treatment for the central nervous system by assessing the degree of muscle recovery.
Collapse
Affiliation(s)
- Subok Kim
- Department of Software Convergence, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, 31538, Asan City, Chungnam, Republic of Korea
| | - Sanghun Jang
- Department of Physical Therapy, College of Health and Life Sciences, Korea National University of Transportation, 61, Daehak-ro, 27909, Jeungpyeong-eup, Chungbuk, Republic of Korea
| | - Onseok Lee
- Department of Software Convergence, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, 31538, Asan City, Chungnam, Republic of Korea.
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, 22, Soonchunhyang-ro, 31538, Asan City, Chungnam, Republic of Korea.
| |
Collapse
|
2
|
Kwon HJ, Hahn KR, Moon SM, Yoo DY, Kim DW, Hwang IK. PFKFB3 ameliorates ischemia-induced neuronal damage by reducing reactive oxygen species and inhibiting nuclear translocation of Cdk5. Sci Rep 2024; 14:24694. [PMID: 39433564 PMCID: PMC11494100 DOI: 10.1038/s41598-024-75031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) plays an essential role in glycolysis and in the antioxidant pathway associated with glutathione. Therefore, we investigated the effects of PFKFB3 on oxidative and ischemic damage. We synthesized a fusion protein of transactivator of transcription (Tat)-PFKFB3 to facilitate its passage into the intracellular space and examine its effects against oxidative stress induced by hydrogen peroxide (H2O2) treatment and ischemic damage caused by occlusion of the common carotid arteries for 5 min in gerbils. The Tat-PFKFB3 protein was efficiently delivered into HT22 cells in a concentration- and time-dependent manner, with higher levels observed 18 h after treatment. Furthermore, treatment with 6 µM Tat-PFKFB3 demonstrated intracellular delivery into HT22 cells, as analyzed through immunocytochemical staining. Moreover, it significantly ameliorated the reduction of cell viability induced by 200 µM H2O2 treatment. Tat-PFKFB3 treatment also alleviated H2O2-induced DNA fragmentation and reactive oxygen species formation in HT22 cells. In gerbils, the intraperitoneal administration of 2 mg/kg Tat-PFKFB3 efficiently delivered the substance to all hippocampal areas, including the hippocampal CA1 region. This administration significantly mitigated ischemia-induced hyperlocomotion, long-term memory deficits, and ischemic neuronal death in the hippocampal CA1 region after ischemia. Additionally, treatment with 2 mg/kg Tat-PFKFB3 significantly ameliorated the translocation of Cdk5 from the cytosol to the nucleus in the hippocampal CA1 region 24 h after ischemia, but not in other regions. The treatment also significantly reduced reactive oxygen species formation in the CA1 region. These findings suggest that Tat-PFKFB3 reduces neuronal damage in the hippocampal CA1 region after ischemia through the reduction of Cdk5 signaling and reactive oxygen species formation. Therefore, Tat-PFKFB3 may have potential applications in reducing ischemic damage.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Xin D, Li T, Zhao Y, Guo X, Gai C, Jiang Z, Yu S, Cheng J, Song Y, Cheng Y, Luo Q, Gu B, Liu D, Wang Z. MiR-100-5p-rich small extracellular vesicles from activated neuron to aggravate microglial activation and neuronal activity after stroke. J Nanobiotechnology 2024; 22:534. [PMID: 39227960 PMCID: PMC11370036 DOI: 10.1186/s12951-024-02782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Ischemic stroke is a common cause of mortality and severe disability in human and currently lacks effective treatment. Neuronal activation and neuroinflammation are the major two causes of neuronal damage. However, little is known about the connection of these two phenomena. This study uses middle cerebral artery occlusion mouse model and chemogenetic techniques to study the underlying mechanisms of neuronal excitotoxicity and severe neuroinflammation after ischemic stroke. Chemogenetic inhibition of neuronal activity in ipsilesional M1 alleviates infarct area and neuroinflammation, and improves motor recovery in ischemia mice. This study identifies that ischemic challenge triggers neuron to produce unique small extracellular vesicles (EVs) to aberrantly activate adjacent neurons which enlarge the neuron damage range. Importantly, these EVs also drive microglia activation to exacerbate neuroinflammation. Mechanistically, EVs from ischemia-evoked neuronal activity induce neuronal apoptosis and innate immune responses by transferring higher miR-100-5p to adjacent neuron and microglia. MiR-100-5p can bind to and activate TLR7 through U18U19G20-motif, thereby activating NF-κB pathway. Furthermore, knock-down of miR-100-5p expression improves poststroke outcomes in mice. Taken together, this study suggests that the combination of inhibiting aberrant neuronal activity and the secretion of specific EVs-miRNAs may serve as novel methods for stroke treatment.
Collapse
Affiliation(s)
- Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, 92354, USA
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Zige Jiang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuwen Yu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Jiao Cheng
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yahong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qian Luo
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Bing Gu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
4
|
Xiong Y, Cui MY, Li ZL, Fu YQ, Zheng Y, Yu Y, Zhang C, Huang XY, Chen BH. ULK1 confers neuroprotection by regulating microglial/macrophages activation after ischemic stroke. Int Immunopharmacol 2024; 127:111379. [PMID: 38141409 DOI: 10.1016/j.intimp.2023.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Microglial activation and autophagy play a critical role in the progression of ischemic stroke and contribute to the regulation of neuroinflammation. Unc-51-like kinase 1 (ULK1) is the primary autophagy kinase involved in autophagosome formation. However, the impact of ULK1 on neuroprotection and microglial activation after ischemic stroke remains unclear. In this study, we established a photothrombotic stroke model, and administered SBI-0206965 (SBI), an ULK1 inhibitor, and LYN-1604 hydrochloride (LYN), an ULK1 agonist, to modulate ULK1 activity in vivo. We assessed sensorimotor deficits, neuronal apoptosis, and microglial/macrophage activation to evaluate the neurofunctional outcome. Immunofluorescence results revealed ULK1 was primarily localized in the microglia of the infarct area following ischemia. Upregulating ULK1 through LYN treatment significantly reduced infarct volume, improved motor function, promoted the increase of anti-inflammatory microglia. In conclusion, ULK1 facilitated neuronal repair and promoted the formation of anti-inflammatory microglia pathway after ischemic injury.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mai Yin Cui
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Department of Rehabilitation and Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310051, Zhejiang, China
| | - Zhuo Li Li
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yan Qiong Fu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yu Zheng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yi Yu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xin Yi Huang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
5
|
Yang Y, Xu M, Yuan W, Feng Y, Hou Y, Fang F, Duan S, Bai L. Network Pharmacology and Molecular Docking Analysis on Mechanisms of Scutellariae Radix in the Treatment of Cerebral Ischemia-reperfusion Injury. Comb Chem High Throughput Screen 2024; 27:2712-2725. [PMID: 37855354 DOI: 10.2174/0113862073258863230921180641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Multiple brain disorders are treated by Scutellaria Radix (SR), including cerebral ischemia-reperfusion (CI/R). However, more studies are needed to clarify the molecular mechanism of SR for CI/R. METHODS The active substances and potential targets of SR and CI/R-related genes were obtained through public databases. Overlapping targets of SR and CI/R were analyzed using proteinprotein interaction (PPI) networks. GO and KEGG enrichment analyses were performed to predict the pathways of SR against CI/R, and the key components and targets were screened for molecular docking. The results of network pharmacology analysis were verified using in vitro experiments. RESULTS 15 components and 64 overlapping targets related to SR and CI/R were obtained. The top targets were AKT1, IL-6, CAS3, TNF, and TP53. These targets have been studied by GO and KEGG to be connected to a number of signaling pathways, including MAPK, PI3K-Akt pathway, and apoptosis. Molecular docking and cell experiments helped to further substantiate the network pharmacology results. CONCLUSION The active compound of SR was able to significantly decrease the apoptosis of HT- 22 cells induced by OGD/R. This finding suggests that SR is a potentially effective treatment for CI/R by modulating the MAPK and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| | - Mengrong Xu
- Department of Pharmacy, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| | - Wenting Yuan
- Department of College of Life Sciences, Northwest University, No. 229, North Taibai Road, Beilin District, China
| | - Yue Feng
- Department of College of Life Sciences, Northwest University, No. 229, North Taibai Road, Beilin District, China
| | - Yongqiang Hou
- Department of Pharmacy, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| | - Fei Fang
- Deparment of Central Lab, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| | - Shiwan Duan
- Department of Pharmacy, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| | - Lu Bai
- Department of Pharmacy, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| |
Collapse
|
6
|
Kwon HJ, Jeon HJ, Choi GM, Hwang IK, Kim DW, Moon SM. Tat-CCT2 Protects the Neurons from Ischemic Damage by Reducing Oxidative Stress and Activating Autophagic Removal of Damaged Protein in the Gerbil Hippocampus. Neurochem Res 2023; 48:3585-3596. [PMID: 37561257 DOI: 10.1007/s11064-023-03995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
CCT2 is a eukaryotic chaperonin TCP-1 ring complex subunit that mediates protein folding, autophagosome incorporation, and protein aggregation. In this study, we investigated the effects of CCT on oxidative and ischemic damage using in vitro and in vivo experimental models. The Tat-CCT2 fusion protein was efficiently delivered into HT22 cells in a concentration- and time-dependent manner, and the delivered protein was gradually degraded in HT22 cells. Incubation with Tat-CCT2 significantly ameliorated the 200 µM hydrogen peroxide (H2O2)-induced reduction in cell viability in a concentration-dependent manner, and 8 µM Tat-CCT2 treatment significantly alleviated H2O2-induced DNA fragmentation and reactive oxygen species formation in HT22 cells. In gerbils, CCT2 protein was efficiently delivered into pyramidal cells in CA1 region by intraperitoneally injecting 0.5 mg/kg Tat-CCT2, as opposed to control CCT2. In addition, treatment with 0.2 or 0.5 mg/kg Tat-CCT2 mitigated ischemia-induced hyperlocomotive activity 1 d after ischemia and confirmed the neuroprotective effects by NeuN immunohistochemistry in the hippocampal CA1 region 4 d after ischemia. Tat-CCT2 treatment significantly reduced the ischemia-induced activation of astrocytes and microglia in the hippocampal CA1 region 4 d after ischemia. Furthermore, treatment with 0.2 or 0.5 mg/kg Tat-CCT2 facilitated ischemia-induced autophagic activity and ameliorated ischemia-induced autophagic initiation in the hippocampus 1 d after ischemia based on western blotting for LC3B and Beclin-1, respectively. Levels of p62, an autophagic substrate, significantly increased in the hippocampus following treatment with Tat-CCT2. These results suggested that Tat-CCT2 exerts neuroprotective effects against oxidative stress and ischemic damage by promoting the autophagic removal of damaged proteins or organelles.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hong Jun Jeon
- Department of Neurosurgery, Kangdong Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 05355, South Korea
| | - Goang-Min Choi
- Department of Thoracic and Cardiovascular Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea.
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea.
| |
Collapse
|
7
|
Lee CH, Lee TK, Kim DW, Lim SS, Kang IJ, Ahn JH, Park JH, Lee JC, Kim CH, Park Y, Won MH, Choi SY. Relationship between Neuronal Damage/Death and Astrogliosis in the Cerebral Motor Cortex of Gerbil Models of Mild and Severe Ischemia and Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23095096. [PMID: 35563487 PMCID: PMC9100252 DOI: 10.3390/ijms23095096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis.
Collapse
Affiliation(s)
- Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea;
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Choong-Hyo Kim
- Department of Neurosurgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea;
| | - Yoonsoo Park
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (M.-H.W.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
- Correspondence: (M.-H.W.); (S.Y.C.)
| |
Collapse
|
8
|
Park YE, Noh Y, Kim DW, Lee TK, Ahn JH, Kim B, Lee JC, Park CW, Park JH, Kim JD, Kim YM, Kang IJ, Lee JW, Kim SS, Won MH. Experimental pretreatment with YES-10 ®, a plant extract rich in scutellarin and chlorogenic acid, protects hippocampal neurons from ischemia/reperfusion injury via antioxidant role. Exp Ther Med 2021; 21:183. [PMID: 33488792 PMCID: PMC7812581 DOI: 10.3892/etm.2021.9614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Erigeron annuus (L.) PERS. (EALP) and Clematis mandshurica RUPR. (CMR) have been used in traditional remedies due to their medicinal effects. Recently, we reported that pretreatment with 200 mg/kg of YES-10® (a combination of extracts from leaves of EALP and CMR) displayed neuroprotective effects against brain ischemia and reperfusion injury. The present study analyzed the major ingredients of YES-10® and investigated whether neuroprotection from YES-10® was dependent upon antioxidant effects in the cornu ammonis 1 (CA1) field in the gerbil hippocampus, after transient forebrain ischemia for 5 min. YES-10® was demonstrated to predominantly contain scutellarin and chlorogenic acid. Pretreatment with YES-10® significantly increased protein levels and the immunoreactivity of copper/zinc-superoxide dismutase (SOD1) and manganese-superoxide dismutase (SOD2) was in the pyramidal neurons of the hippocampal CA1 field when these were examined prior to transient ischemia induction. The increased SODs in CA1 pyramidal neurons following YES-10® treatment were maintained after ischemic injury. In this case, the CA1 pyramidal neurons were protected from ischemia-reperfusion injury. Oxidative stress was significantly attenuated in the CA1 pyramidal neurons, and this was determined by 4-hydroxy-2-nonenal immunohistochemistry and dihydroethidium histofluorescence staining. Taken together, the results indicated that YES-10® significantly attenuated transient ischemia-induced oxidative stress and may be utilized for developing a protective agent against ischemic insults.
Collapse
Affiliation(s)
- Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yoohun Noh
- Department of Anatomy and Cell Biology and Neurology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea.,Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.,Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam 50510, Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Ji-Won Lee
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Sung-Su Kim
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
9
|
Gutierrez J. Heterogeneity of the circle of Willis and its implication in hippocampal perfusion. Brain 2020; 143:e58. [PMID: 32594178 DOI: 10.1093/brain/awaa169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jose Gutierrez
- Department of Neurology, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Fifield KE, Vanderluit JL. Rapid degeneration of neurons in the penumbra region following a small, focal ischemic stroke. Eur J Neurosci 2020; 52:3196-3214. [DOI: 10.1111/ejn.14678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 01/04/2023]
|
11
|
Kim W, Kang MS, Kim TH, Yoo DY, Park JH, Jung HY, Won MH, Choi JH, Hwang IK. Ischemia-related changes of fat-mass and obesity-associated protein expression in the gerbil hippocampus. Metab Brain Dis 2020; 35:335-342. [PMID: 31786728 DOI: 10.1007/s11011-019-00513-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023]
Abstract
Fat-mass and obesity-associated protein (Fto) plays important roles in energy metabolism. It also acts as a demethylase and is most abundantly found in the brain. In the present study, we examined the spatial and temporal changes of Fto immunoreactivity after five minutes of transient forebrain ischemia in the hippocampus. In the control group, Fto immunoreactivity was mainly observed in the nucleus of pyramidal cells in the CA1 and CA3 regions as well as the polymorphic layer, granule cell layer, and subgranular zone of the dentate gyrus. Fto immunoreactivity was transiently, but not significantly, increased in the hippocampal CA3 region and the dentate gyrus two days after ischemia compared to mice without ischemia in the sham-operated group. Four days after ischemia, low Fto immunoreactivity was observed in the stratum pyramidale of the CA1 region because of neuronal death, but Fto immunoreactive cells were abundantly detected in the stratum pyramidale of the CA3 region, which is relatively resistant to ischemic damage. Thereafter, Fto immunoreactivity progressively decreased in the hippocampal CA1 and CA3 regions and the dentate gyrus until ten days after ischemia. At this time-point, Fto immunoreactivity was significantly lower in the hippocampal CA1 and CA3 regions and the dentate gyrus compared to that in the sham-operated group. The reduction of Fto immunoreactive structures in the hippocampus may be associated with impairments in Fto-related hippocampal function.
Collapse
Affiliation(s)
- Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, 85-508 Seoul National University, 1 Gwanak-ro, Seoul, 08826, South Korea
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, 411-105 Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Tae Hyeong Kim
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, 411-105 Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, 31151, South Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine,, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, 85-508 Seoul National University, 1 Gwanak-ro, Seoul, 08826, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, 411-105 Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, 24341, South Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, 85-508 Seoul National University, 1 Gwanak-ro, Seoul, 08826, South Korea.
| |
Collapse
|
12
|
YES-10, A Combination of Extracts from Clematis mandshurica RUPR. and Erigeron annuus (L.) PERS., Prevents Ischemic Brain Injury in A Gerbil Model of Transient Forebrain Ischemia. PLANTS 2020; 9:plants9020154. [PMID: 31991860 PMCID: PMC7076646 DOI: 10.3390/plants9020154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
: Clematis mandshurica RUPR. (CMR) and Erigeron annuus (L.) PERS. (EALP) have pharmacological effects including anti-inflammatory activity and been used in traditional medicines in Asia. However, neuroprotective effects of CMR and/or EALP extracts against brain ischemic insults have never been addressed. Thus, the aim of this study was to examine neuroprotective effects of YES-10, a combination of extracts from CMR and EALP (combination ratio, 1:1), in the hippocampus following ischemia/reperfusion in gerbils. Protection of neurons was investigated by cresyl violet staining, fluoro-jade B histofluorescence staining and immunohistochemistry for neuronal nuclei. In addition, attenuation of gliosis was studied by immunohistochemistry for astrocytic and microglial markers. Treatments with 50 or 100 mg/kg YES-10 failed to protect neurons in the hippocampus after ischemia/reperfusion injury. However, administration of 200 mg/kg YES-10 protected neurons from ischemia/reperfusion injury and attenuated reactive gliosis. These findings strongly suggest that a combination of extracts from CMR and EALP can be used as a prevention approach/drug against brain ischemic damage.
Collapse
|
13
|
Shen Y, Lu H, Xu R, Tian H, Xia X, Zhou FH, Wang L, Dong J, Sun L. The Expression of GLAST and GLT1 in a Transient Cerebral Ischemia Mongolian Gerbil Model. Neuropsychiatr Dis Treat 2020; 16:789-800. [PMID: 32280223 PMCID: PMC7125407 DOI: 10.2147/ndt.s238455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/10/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Excitatory amino acid transporters (EAATs) have an indispensable function in the reuptake of extracellular glutamate. To investigate the relationship and the expression of neuronal and astrocytic markers after brain ischemia, the temporal profile of glial EAATs in both peripheral and core regions of the cortex was examined. METHODS Transient common carotid artery occlusion was used to induce unilateral transient forebrain ischemia of Mongolian gerbils, and post-ischemic brains (6 h to 2 w) were collected and prepared for immunohistochemical and Western blotting analysis of glutamine synthetase (GS), GLT-1, GLAST, S100β, and NeuN, and for Alizarin red staining of calcium deposits. RESULTS The expression of GLAST and GLT-1 were significantly escalated at 6 h both in the core and periphery regions, while reduced from 12 h to 2 w in the core region post-ischemia. GS-positive cells increased at 6 h both in the core and periphery regions, while the density of Alizarin red-positive cells increased and peaked at 12 h in the ischemic cortex. The density of S100β-positive cells decreased in the ischemic core and increased in the periphery region. Immunofluorescence staining showed that S100β and TUNEL double-positive cells increased at 12 h in the core region. CONCLUSION The results of GLT-1 and GLAST expression in the cortex indicate that their up-regulation was time-dependent and occurred in the acute post-ischemia period, whereas their down-regulation was region-dependent and it is involved in the pathological progress of nerve cell and glial cell death, and has a series of cascade reactions.
Collapse
Affiliation(s)
- Yanling Shen
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China.,Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen, Fujian 361000, People's Republic of China
| | - Huiling Lu
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
| | - Runnan Xu
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
| | - Haibo Tian
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
| | - Xuewei Xia
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
| | - Fiona H Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Liping Wang
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Jianghui Dong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, People's Republic of China
| | - Liyuan Sun
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
| |
Collapse
|
14
|
Park JH, Kim DW, Lee TK, Park CW, Park YE, Ahn JH, Lee HA, Won MH, Lee CH. Improved HCN channels in pyramidal neurons and their new expression levels in pericytes and astrocytes in the gerbil hippocampal CA1 subfield following transient ischemia. Int J Mol Med 2019; 44:1801-1810. [PMID: 31573045 PMCID: PMC6777693 DOI: 10.3892/ijmm.2019.4353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/04/2019] [Indexed: 11/30/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been known to participate in the regulation of neuronal excitability, synaptic transmission and long-term potentiation in the hippocampus. The present study investigated transient ischemia-induced changes of HCN1 and HCN2 expressions in the Cornu Ammonis 1 (CA1) subfield of the hippocampus in gerbils subjected to 5 min transient global cerebral ischemia (tgCI). Neuronal death was exhibited in pyramidal neurons of the striatum pyramidale in the CA1 subfield 4 days after tgCI. HCN1 and HCN2 immunoreactivities were demonstrated in intact CA1 pyramidal neurons, and were transiently and markedly increased in the CA pyramidal neurons at 6 h after ischemia. Thereafter, they gradually decreased in a time-dependent manner. A total of 4 days after ischemia, HCN1 and HCN2 immunoreactivities were barely detected in the CA1 pyramidal neurons; however, HCN1 and HCN2 were began to be expressed in pericytes and astrocytes at 4 days after ischemia. The results indicated that HCN1 and HCN2 expression levels were apparently changed in the gerbil hippocampal CA1 subfield following tgCI and suggested that ischemia-induced alterations in HCN1 and HCN2 expression levels may be closely associated with the death of CA1 pyramidal neurons following 5 min of tgCI.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| |
Collapse
|