1
|
Xu Q, Liu X, Jiang X, Kim Y. Simulate Scientific Reasoning with Multiple Large Language Models: An Application to Alzheimer's Disease Combinatorial Therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.10.24318800. [PMID: 39711724 PMCID: PMC11661384 DOI: 10.1101/2024.12.10.24318800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Motivation This study aims to develop an AI-driven framework that leverages large language models (LLMs) to simulate scientific reasoning and peer review to predict efficacious combinatorial therapy when data-driven prediction is infeasible. Results Our proposed framework achieved a significantly higher accuracy (0.74) than traditional knowledge-based prediction (0.52). An ablation study highlighted the importance of high quality few-shot examples, external knowledge integration, self-consistency, and review within the framework. The external validation with private experimental data yielded an accuracy of 0.82, further confirming the framework's ability to generate high-quality hypotheses in biological inference tasks. Our framework offers an automated knowledge-driven hypothesis generation approach when data-driven prediction is not a viable option. Availability and implementation Our source code and data are available at https://github.com/QidiXu96/Coated-LLM.
Collapse
Affiliation(s)
- Qidi Xu
- McWilliams School of Biomedical Informatics, UTHealth Houston, Houston, TX, 77030
| | - Xiaozhong Liu
- Computer Science and Data Science, Worcester Polytechnic Institute, Worcester, MA, 01609
| | - Xiaoqian Jiang
- McWilliams School of Biomedical Informatics, UTHealth Houston, Houston, TX, 77030
| | - Yejin Kim
- McWilliams School of Biomedical Informatics, UTHealth Houston, Houston, TX, 77030
| |
Collapse
|
2
|
Pereira DE, de Cássia de Araújo Bidô R, da Costa Alves M, Frazão Tavares de Melo MF, Dos Santos Costa AC, Gomes Dutra LM, de Morais MM, Gomes da Câmara CA, Viera VB, Alves AF, de Araujo WJ, Leite EL, Bruno de Oliveira CJ, Rufino Freitas JC, Barbosa Soares JK. Maternal supplementation with Dipteryx alata Vog. modulates fecal microbiota diversity, accelerates reflex ontogeny, and improves non-associative and spatial memory in the offspring of rats. Brain Res 2024; 1850:149383. [PMID: 39647597 DOI: 10.1016/j.brainres.2024.149383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/09/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Maternal diet plays a crucial role in offspring development, directly affecting neural development and gut microbiota composition. This study aimed to assess if baru almond and oil (Dipteryx alata Vog.) could modulate intestinal microbiota, brain fatty acid profile, and enhance memory in offspring of rats treated during early life stages. Three groups were formed: Control- received distilled water by gavage; Oil- received 2000 mg/kg of baru oil, and Almond - received 2000 mg/kg of baru almond. Somatic development and reflex ontogenesis were evaluated in offspring during the first 21 days. In adolescence and adulthood, memory was tested using Open Field Habituation, Object Recognition, and Morris Water Maze. Brain histology and fatty acid were measured, and fecal microbiota analysis was performed. Both almond and oil groups showed increased PUFAs in breast milk and brains, accelerated reflex ontogeny, improved somatic development and better performance in the memory tests in both life stages (p < 0.05). Supplementation enhanced fecal microbiota abundance associated with neuroprotective effects. The almond group showed a 29 % increase in Eubacterium, Candidates-Arthromitus, Collinsella, and Christensenellaceae-R-7. Both oil and almond groups had higher Blautia and Clostridia-UCG-014 compared to controls. The oil group had about 10 % more Ruminococcus, UCG-005, Acetatifactor, Negativibacillus, and Lachnospiraceae-ND3007 than the others. With the present data, we can observe the safety of baru consumption by pregnant and lactating rats and verify its effects on modulating the microbiota, inducing adequate development of the offspring's nervous system, contributing to anticipated reflex maturation and improving memory.
Collapse
Affiliation(s)
- Diego Elias Pereira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Rita de Cássia de Araújo Bidô
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Maciel da Costa Alves
- Department of Biofísica and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ana Carolina Dos Santos Costa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil; Department of Rural Technology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Larissa Maria Gomes Dutra
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil.
| | | | | | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and General Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Wydemberg José de Araujo
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | - Elma Lima Leite
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | | | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| |
Collapse
|
3
|
Han Z, Wang L, Zhu H, Tu Y, He P, Li B. Uncovering the effects and mechanisms of tea and its components on depression, anxiety, and sleep disorders: A comprehensive review. Food Res Int 2024; 197:115191. [PMID: 39593401 DOI: 10.1016/j.foodres.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/28/2024]
Abstract
Depression, anxiety and sleep disorders are prevalent psychiatric conditions worldwide, significantly impacting the physical and mental well-being of individuals. The treatment of these conditions poses various challenges, including limited efficacy and potential side effects. Tea, a globally recognized healthful beverage, contains a variety of active compounds. Studies have shown that consuming tea or ingesting its certain active ingredients have a beneficial impact on the mental health issues mentioned above. While the effects of tea on physical health are well-documented, there remains a gap in our systematic understanding of its impact on mental health. This article offers a thorough overview of animal, clinical, and epidemiological studies examining tea and its components in the treatment of depression, anxiety, and sleep disorders, and summarizes the associated molecular mechanisms. The active ingredients in tea, including L-theanine, γ-aminobutyric acid (GABA), arginine, catechins, theaflavins, caffeine, theacrine, and several volatile compounds, may help improve depression, anxiety, and sleep disorders. The underlying molecular mechanisms involve the regulation of neurotransmitters, including monoamines, GABA, and brain-derived neurotrophic factor (BDNF), as well as the suppression of oxidative stress and inflammation. Additionally, these ingredients may influence the microbiota-gut-brain (MGB) axis and the hypothalamic-pituitary-adrenal (HPA) axis. This review provides valuable insights into the effects and mechanisms by which tea and its components regulate depression, anxiety, and sleep disorders, laying the groundwork for further research into relevant mechanisms and the development of tea-based mental health products.
Collapse
Affiliation(s)
- Ziyi Han
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Leyu Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Huanqing Zhu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
4
|
Moreira P, Macedo J, Matos P, Bicker J, Fortuna A, Figueirinha A, Salgueiro L, Batista MT, Silva A, Silva S, Resende R, Branco PC, Cruz MT, Pereira CF. Effect of bioactive extracts from Eucalyptus globulus leaves in experimental models of Alzheimer's disease. Biomed Pharmacother 2024; 181:117652. [PMID: 39486370 DOI: 10.1016/j.biopha.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Current therapies for Alzheimer's disease (AD) do not delay its progression, therefore, novel disease-modifying strategies are urgently needed. Recently, an increasing number of compounds from natural origin with protective properties against AD have been identified. Mixtures or extracts obtained from natural products containing several bioactive compounds have multifunctional properties and have drawn the attention because multiple AD pathways can be simultaneously modulated. This study evaluated the in vitro and in vivo effect of the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and an extract obtained from the hydrodistillation residual water (HRW). It was observed that EO and HRW have anti-inflammatory effect in brain immune cells modeling AD, namely lipopolysaccharide (LPS)- and amyloid-beta (Aβ)-stimulated microglia. In cell models that mimic AD-related neuronal dysfunction, HRW attenuated Aβ secretion and Aβ-induced mitochondrial dysfunction. Since the HRW's major components did not cross the blood-brain barrier, both EO and HRW were administered to the APP/PS1 transgenic AD mouse model by an intranasal route, which reduced cortical and hippocampal Aβ levels, and to rescue memory deficits and anxiety-like behaviors. Finally, HRW and EO were found to regulate cholesterol levels in aged mice after intranasal administration, suggesting that these extracts can reduce hypercholesterolemia and avoid risk for AD development. Overall, findings support a protective role of E. globulus extracts against AD‑like pathology and cognitive impairment highlighting the underlying mechanisms. These extracts obtained from underused forest biomass could be useful to develop nutraceutical supplements helpful to avoid AD risk and to prevent its progression.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Jéssica Macedo
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Sónia Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; iCBR-Coimbra Institute for Clinical and Biomedical Research, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Pedro Costa Branco
- RAIZ-Forest and Paper Research Institute, Eixo, Aveiro 3800-783, Portugal
| | - Maria Teresa Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Cláudia Fragão Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
5
|
Mata-Bermudez A, Diaz-Ruiz A, Silva-García LR, Gines-Francisco EM, Noriega-Navarro R, Rios C, Romero-Sánchez HA, Arroyo D, Landa A, Navarro L. Mucuna pruriens, a Possible Treatment for Depressive Disorders. Neurol Int 2024; 16:1509-1527. [PMID: 39585071 PMCID: PMC11587415 DOI: 10.3390/neurolint16060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Depression is a mental disorder that depicts a wide variety of symptoms, including mood and cognitive alterations, as well as recurrent thoughts of death or suicide. It could become the second leading cause of premature death or disability worldwide. Treatments with conventional antidepressants have several limitations in terms of effectiveness, side effects, and high costs. Therefore, medicinal plants such as Mucuna pruriens are potent candidates for treating depressive disorders. This review shows a compendium of evidence supporting the antidepressant effect of the Mucuna pruriens plant in diverse animal models. This includes the mechanisms of action underlying the antidepressant activity of the treatment concerning dopamine, serotonin, norepinephrine, reactive oxygen species, nitric oxide, cortisol, and inflammation. Clinical trials are needed to study the efficacy and safety of Mucuna pruriens for depression.
Collapse
Affiliation(s)
- Alfonso Mata-Bermudez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-B.); (R.N.-N.); (D.A.)
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico; (L.R.S.-G.); (E.M.G.-F.); (H.A.R.-S.)
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México 14269, Mexico;
| | - Luis Ricardo Silva-García
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico; (L.R.S.-G.); (E.M.G.-F.); (H.A.R.-S.)
| | - Eduardo Manuel Gines-Francisco
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico; (L.R.S.-G.); (E.M.G.-F.); (H.A.R.-S.)
| | - Roxana Noriega-Navarro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-B.); (R.N.-N.); (D.A.)
| | - Camilo Rios
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico;
- Dirección de Investigación, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico
| | - Héctor Alonso Romero-Sánchez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico; (L.R.S.-G.); (E.M.G.-F.); (H.A.R.-S.)
| | - Diego Arroyo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-B.); (R.N.-N.); (D.A.)
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Luz Navarro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-B.); (R.N.-N.); (D.A.)
| |
Collapse
|
6
|
Bartos M, Gallegos CE, Mónaco N, Lencinas I, Dominguez S, Bras C, Del Carmen Esandi M, Bouzat C, Gumilar F. Developmental exposure to arsenic reduces anxiety levels and leads to a depressive-like behavior in female offspring rats: Molecular changes in the prefrontal cortex. Neurotoxicology 2024; 104:85-94. [PMID: 39079579 DOI: 10.1016/j.neuro.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Exposure to inorganic arsenic (iAs) detrimentally affects the structure and function of the central nervous system. In-utero and postnatal exposure to iAs has been connected to adverse effects on cognitive development. Therefore, this investigation explores neurobehavioral and neurochemical effects of 0.05 and 0.10 mg/L iAs exposure during gestation and lactation periods on 90-day-old female offspring rats. The assessment of anxiety- and depressive-like behaviors was conducted through the application of an elevated plus maze and a forced swim test. The neurochemical changes were evaluated in the prefrontal cortex (PFC) through the determination of enzyme activities and α1 GABAA subunit expression levels. Our findings revealed a notable impact of iAs exposure on anxiety and the induction of depressive-like behavior in 90-day-old female offspring. Furthermore, the antioxidant status within the PFC exhibited discernible alterations in exposed rats. Notably, the activities of acetylcholinesterase and glutamate pyruvate transaminase demonstrated an increase, while glutamate oxaloacetate transaminase activity displayed a decrease within the PFC due to the iAs treatment. Additionally, a distinct downregulation in the mRNA expression of the α1GABAA receptor was observed in this neuronal region. These findings strongly suggest that iAs exposure during early stages of rat development causes significant modifications in brain oxidative stress markers and perturbs the activity of enzymes associated with cholinergic and glutamatergic systems. In parallel, it elicits a discernible reduction in the level of GABA receptors within the PFC. These molecular alterations may play a role in the diminished anxiety levels and the depressive-like behavior outlined in the current investigation.
Collapse
Affiliation(s)
- Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Cristina E Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Nina Mónaco
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Ileana Lencinas
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Sergio Dominguez
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Cristina Bras
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina.
| |
Collapse
|
7
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
8
|
Xie L, Yuan Y, Yang F, Jiang H, Yang F, Yang C, Yu Z. Comparative analysis of antioxidant activities and chemical compositions in the extracts of different edible parts from Camellia tetracocca Zhang ( C. tetracocca) with two distinct color characteristics. Food Chem X 2024; 22:101496. [PMID: 38817977 PMCID: PMC11137522 DOI: 10.1016/j.fochx.2024.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
The Camellia tetracocca Zhang is a rare and ancient plant, exclusively found in the vicinity of Puan County, Guizhou Province, China. According to leaf color, two distinct variations have been identified: purple C. tetracocca Zhang (PCTZ) and green C. tetracocca (GCTZ). This research was conducted to investigate the antioxidant activities and chemical compositions of different edible parts of PCTZ and GCTZ. Antioxidant activity was evaluated using DPPH, ABTS, HSA, and T-AOC assays, while the content of compounds was determined by HPLC. The findings demonstrated that the antioxidant capacity of PCTZ leaves is significantly superior to that of GCTZ leaves. Notably, theacrine, a rare compound, contains up to 2.075% in PCTZ leaves, indicating potential as a novel natural antidepressant and antioxidant. In conclusion, PCTZ is a distinctive tea beverage and a valuable genetic material for tea tree breeding due to its high theacrine and low caffeine characteristics.
Collapse
Affiliation(s)
| | | | - Feijiao Yang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Huqin Jiang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Feng Yang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Chenju Yang
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Zhengwen Yu
- School of Life Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
9
|
Alymbaeva D, Szabo C, Jocsak G, Bartha T, Zsarnovszky A, Kovago C, Ondrasovicova S, Kiss DS. Analysis of arsenic-modulated expression of hypothalamic estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptor gamma mRNA and simultaneous mitochondrial morphology and respiration rates in the mouse. PLoS One 2024; 19:e0303528. [PMID: 38753618 PMCID: PMC11098319 DOI: 10.1371/journal.pone.0303528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,β; TRα,β) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,β, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRβ and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.
Collapse
Affiliation(s)
- Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Csaba Szabo
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Physiology and Health, Institute of Physiology and Nutrition, Hungarian University of Agricultural and Life Sciences, Kaposvar, Hungary
| | - Csaba Kovago
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Silvia Ondrasovicova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
10
|
Norouzkhani N, Afshari S, Sadatmadani SF, Mollaqasem MM, Mosadeghi S, Ghadri H, Fazlizade S, Alizadeh K, Akbari Javar P, Amiri H, Foroughi E, Ansari A, Mousazadeh K, Davany BA, Akhtari kohnehshahri A, Alizadeh A, Dadkhah PA, Poudineh M. Therapeutic potential of berries in age-related neurological disorders. Front Pharmacol 2024; 15:1348127. [PMID: 38783949 PMCID: PMC11112503 DOI: 10.3389/fphar.2024.1348127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aging significantly impacts several age-related neurological problems, such as stroke, brain tumors, oxidative stress, neurodegenerative diseases (Alzheimer's, Parkinson's, and dementia), neuroinflammation, and neurotoxicity. Current treatments for these conditions often come with side effects like hallucinations, dyskinesia, nausea, diarrhea, and gastrointestinal distress. Given the widespread availability and cultural acceptance of natural remedies, research is exploring the potential effectiveness of plants in common medicines. The ancient medical system used many botanical drugs and medicinal plants to treat a wide range of diseases, including age-related neurological problems. According to current clinical investigations, berries improve motor and cognitive functions and protect against age-related neurodegenerative diseases. Additionally, berries may influence signaling pathways critical to neurotransmission, cell survival, inflammation regulation, and neuroplasticity. The abundance of phytochemicals in berries is believed to contribute to these potentially neuroprotective effects. This review aimed to explore the potential benefits of berries as a source of natural neuroprotective agents for age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Afshari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | | | - Shakila Mosadeghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hani Ghadri
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Fazlizade
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Alizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pouyan Akbari Javar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamidreza Amiri
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Kourosh Mousazadeh
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Ata Akhtari kohnehshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Balakrishnan R, Jannat K, Choi DK. Development of dietary small molecules as multi-targeting treatment strategies for Alzheimer's disease. Redox Biol 2024; 71:103105. [PMID: 38471283 PMCID: PMC10945280 DOI: 10.1016/j.redox.2024.103105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cognitive dysfunction can occur both in normal aging and age-related neurological disorders, such as mild cognitive impairment and Alzheimer's disease (AD). These disorders have few treatment options due to side effects and limited efficacy. New approaches to slow cognitive decline are urgently needed. Dietary interventions (nutraceuticals) have received considerable attention because they exhibit strong neuroprotective properties and may help prevent or minimize AD symptoms. Biological aging is driven by a series of interrelated mechanisms, including oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy, which function through various signaling pathways. Recent clinical and preclinical studies have shown that dietary small molecules derived from natural sources, including flavonoids, carotenoids, and polyphenolic acids, can modulate oxidative damage, cognitive impairments, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, autophagy dysregulation, and gut microbiota dysbiosis. This paper reviews research on different dietary small molecules and their bioactive constituents in the treatment of AD. Additionally, the chemical structure, effective dose, and specific molecular mechanisms of action are comprehensively explored. This paper also discusses the advantages of using nanotechnology-based drug delivery, which significantly enhances oral bioavailability, safety, and therapeutic effect, and lowers the risk of adverse effects. These agents have considerable potential as novel and safe therapeutic agents that can prevent and combat age-related AD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, South Korea; Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea
| | - Khoshnur Jannat
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, South Korea; Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea.
| |
Collapse
|
12
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|
13
|
Xiang Z, Guan H, Zhao X, Xie Q, Xie Z, Cai F, Dang R, Li M, Wang C. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res Int 2024; 180:114068. [PMID: 38395544 DOI: 10.1016/j.foodres.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Gallic acid (GA), a dietary phenolic acid with potent antioxidant activity, is widely distributed in edible plants. GA has been applied in the food industry as an antimicrobial agent, food fresh-keeping agent, oil stabilizer, active food wrap material, and food processing stabilizer. GA is a potential dietary supplement due to its health benefits on various functional disorders associated with oxidative stress, including renal, neurological, hepatic, pulmonary, reproductive, and cardiovascular diseases. GA is rapidly absorbed and metabolized after oral administration, resulting in low bioavailability, which is susceptible to various factors, such as intestinal microbiota, transporters, and metabolism of galloyl derivatives. GA exhibits a tendency to distribute primarily to the kidney, liver, heart, and brain. A total of 37 metabolites of GA has been identified, and decarboxylation and dihydroxylation in phase I metabolism and sulfation, glucuronidation, and methylation in phase Ⅱ metabolism are considered the main in vivo biotransformation pathways of GA. Different types of nanocarriers, such as polymeric nanoparticles, dendrimers, and nanodots, have been successfully developed to enhance the health-promoting function of GA by increasing bioavailability. GA may induce drug interactions with conventional drugs, such as hydroxyurea, linagliptin, and diltiazem, due to its inhibitory effects on metabolic enzymes, including cytochrome P450 3A4 and 2D6, and transporters, including P-glycoprotein, breast cancer resistance protein, and organic anion-transporting polypeptide 1B3. In conclusion, in-depth studies of GA on food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions have laid the foundation for its comprehensive application as a food additive and dietary supplement.
Collapse
Affiliation(s)
- Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| |
Collapse
|
14
|
Lei WX, Zhang L, Chen JL, Zheng GH, Guo LN, Jiang T, Yin ZY, Ming-Ying, Yu QM, Wang N. The role and mechanism of miR-425-3p regulating neuronal pyroptosis -mediated inorganic arsenic-induced generalized anxiety disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115781. [PMID: 38056122 DOI: 10.1016/j.ecoenv.2023.115781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Pyroptosis plays a critical role in the pathogenesis of mental disorders. However, its specific role and mechanism in arsenic (As)-induced generalized anxiety disorder (GAD) remain elusive. We utilized the data from CtdBbase, Phenopedia and DisGeNet to analyze genes that interact with arsenic poisoning and GAD. Subsequently KEGG and GO enrichment analysis were conducted to preliminatively predict the mechanism of inorganic arsenic-induced GAD. Male Wistar rats were administered water containing NaAsO2 (50, 100 μg/L) to evaluate GAD-like behavior through open field test and elevated plus maze. The expression of differential miRNAs including miR-425-3p, and pyroptosis in the prefrontal cortex of rats were detected. Furthermore, SKNSH cells were stimulated with NaAsO2 to examine the molecular changes, and then miR-425-3p mimic was transfected into SKNSH cells to detect pyroptosis in order to verify the function of miR-425-3p. Inorganic arsenic was confirmed to induce GAD-like behavior in rats, characterized by decreased locomotor activity and exploratory activities. Rats with inorganic arsenic-induced GAD exhibited reduced miR-425-3p expression levels in the prefrontal cortex and increased expression of pyroptosis-related proteins, including NF-κB, NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18. Treating with different concentrations of NaAsO2 showed that inorganic arsenic exposure downregulates miR-425-3p expression in SKNSH cells and upregulates the expression levels of pyroptosis-related proteins. Dual-luciferase reporter gene experiments demonstrated that miR-425-3p targets the NFKB1. Overexpressing miR-425-3p reversed the inorganic arsenic-induced pyroptosis in SKNSH cells by inhibiting the expression of NF-κB, NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18. Our findings suggest that inorganic arsenic exposure may induce GAD-like behavior in rats by downregulating miR-425-3p in prefrontal cortex, which targets NF-κB and regulates pyroptosis in neuronal cells.
Collapse
Affiliation(s)
- Wei-Xing Lei
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China; Luoyuan Center for Disease Control and Prevention, Fuzhou 350600, China
| | - Lei Zhang
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China
| | - Jin-Li Chen
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Gao-Hui Zheng
- Luoyuan Center for Disease Control and Prevention, Fuzhou 350600, China
| | - Lin-Nan Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Tao Jiang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Zi-Yue Yin
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Ming-Ying
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Qi-Ming Yu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China.
| | - Na Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China.
| |
Collapse
|
15
|
Chaves N, Nogales L, Montero-Fernández I, Blanco-Salas J, Alías JC. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023; 28:8133. [PMID: 38138621 PMCID: PMC10745362 DOI: 10.3390/molecules28248133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neurodegenerative diseases are associated with oxidative stress, due to an imbalance in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat these diseases, although they often do not cure them and have many adverse effects. Therefore, it is necessary to find complementary and/or alternative drugs that replace current treatments with fewer side effects. It has been demonstrated that natural products derived from plants, specifically phenolic compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus, they may be used as alternative alternative pharmacological treatments for pathological conditions associated with an increase in oxidative stress. The plant species that dominate the Mediterranean ecosystems are characterized by having a wide variety of phenolic compound content. Therefore, these species might be important sources of neuroprotective biomolecules. To evaluate this potential, 24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important compounds present in them. This set of plant species provides a total of 403 different compounds. Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin, kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which are widely distributed among the analyzed plant species (in over 10 species) and which have been involved in the literature in the prevention of different neurodegenerative pathologies. It is also important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus vulgaris, have most of the described compounds with protective properties against neurodegenerative diseases. The present work shows that the plant species that dominate the studied geographic area can provide an important source of phenolic compounds for the pharmacological and biotechnological industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.
Collapse
Affiliation(s)
- Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain; (L.N.); (I.M.-F.); (J.B.-S.); (J.C.A.)
| | | | | | | | | |
Collapse
|
16
|
Flores-Bazán T, Betanzos-Cabrera G, Guerrero-Solano JA, Negrete-Díaz JV, German-Ponciano LJ, Olivo-Ramírez D. Pomegranate (Punica granatum L.) and its phytochemicals as anxiolytic; an underreported effect with therapeutic potential: A systematic review. Brain Res 2023; 1820:148554. [PMID: 37640097 DOI: 10.1016/j.brainres.2023.148554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Anxiety is a mental disorder characterized by excessive concern about possible future threats that, if prolonged, becomes a pathology that must be controlled through psychotherapy and medication. Currently, the pharmacological treatment for anxiety involves the use of antidepressants and benzodiazepines; however, these treatments often come with adverse effects. Thus, there is a need to seek natural compounds that can help alleviate anxiety and reduce these side effects. On the other hand, pomegranate (PG) fruit is known to have important health benefits, which have been compiled in several reviews. However, its anxiolytic effect has not been thoroughly studied, and clinical research on this topic is lacking. The aim of this work was to conduct a systematic review of studies exploring the anxiolytic-like effect of PG and its phytochemicals. Databases such as Pubmed, ScienceDirect, Springer link, Google scholar, Worldwide science, and Web of science were searched for articles using predetermined terms. Inclusion criteria were established, and original articles that met these criteria were selected. The data collected included information on PG part and variety, species, sample size, anxiety model, dose, route and time of administration, reference drug, main results, and the mechanisms of action. Fifty-nine studies were found that reported the anxiolytic-like effect of PG and its phytochemicals such as anthocyanins, flavonoids, tannins, organic acids, and xanthonoids. The literature suggests that the mechanisms of action behind this effect involved the inhibition of the GABAergic receptor, NMDA, CaMKII/CREB pathway; the reduction of oxidative stress, inhibiting TLR4 and nNOS; modulation of cytokines and the expression of NFkB, GAD67, and iNOS, as well as the activation of Nrf2 and AMPK. PG and some of its phytochemicals could be considered as a novel alternative for the treatment of pathological anxiety. This review is the first to document the anxiolytic-like effect of PG.
Collapse
Affiliation(s)
- Tania Flores-Bazán
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Hidalgo 42160, Mexico.
| | - Gabriel Betanzos-Cabrera
- Academic Area of Nutrition, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Hidalgo 42160, Mexico.
| | - José A Guerrero-Solano
- Graduate School of Tlahuelilpan, Academic Area of Nursing, Autonomous University of Hidalgo State, Tlahuelilpan, Hidalgo 42780, Mexico.
| | - José Vicente Negrete-Díaz
- Laboratory of Brain Plasticity and Integrative Neuroscience, Program of Clinical Psychology, University of Guanajuato. Guanajuato 38060, Mexico.
| | | | - Diana Olivo-Ramírez
- Academic Area of Nutrition, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Hidalgo 42160, Mexico.
| |
Collapse
|
17
|
Meftahi GH, Aboutaleb N. Gallic acid ameliorates behavioral dysfunction, oxidative damage, and neuronal loss in the prefrontal cortex and hippocampus in stressed rats. J Chem Neuroanat 2023; 134:102364. [PMID: 38016595 DOI: 10.1016/j.jchemneu.2023.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Gallic acid (GA) is known to be a natural phenolic compound with antioxidant and neuroprotective effects. This study aims to investigate the impact of GA against restraint stress-induced oxidative damage, anxiety-like behavior, neuronal loss, and spatial learning and memory impairment in male Wistar rats. The animals were divided into four groups (n = 8) and subjected to restraint stress for 4 h per day for 14 consecutive days or left undisturbed (control without inducing stress). In the treatment group, the animals were treated with 2 mL normal saline plus 100 mg/kg GA per day for 14 consecutive days (STR + GA group). The animals received the drug or normal saline by gavage 2 h before inducing restraint stress. ELISA assay measured oxidative stress factors. Elevated-plus maze and Morris water maze tests assessed anxiety-like behavior and spatial learning and memory, respectively. Also, neuronal density was determined using Nissl staining. Restraint stress significantly increased MDA and reduced the activities of GPX and SOD in the stressed rats, which were reserved by treatment with 100 mg/kg GA. Restraint stress markedly enhanced the anxiety-like behavior and spatial learning and memory impairment that were reserved by GA. In addition, treatment with GA reduced the neuronal loss in the stressed rats in the hippocampus and prefrontal cortex (PFC) regions. Taken together, our findings suggest that GA has the potential to be used as a good candidate to attenuate neurobehavioral disorders as well as neuronal loss in the hippocampus and PFC induced by restraint stress via reducing oxidative damage.
Collapse
Affiliation(s)
- Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Nahid Aboutaleb
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Samad N, Manzoor N, Batool A, Noor A, Khaliq S, Aurangzeb S, Bhatti SA, Imran I. Protective effects of niacin following high fat rich diet: an in-vivo and in-silico study. Sci Rep 2023; 13:21343. [PMID: 38049514 PMCID: PMC10696033 DOI: 10.1038/s41598-023-48566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
Niacin had long been understood as an antioxidant. There were reports that high fat diet (HFD) may cause psychological and physical impairments. The present study was aimed to experience the effect of Niacin on % growth rate, cumulative food intake, motor activity and anxiety profile, redox status, 5-HT metabolism and brain histopathology in rats. Rats were administered with Niacin at a dose of 50 mg/ml/kg body weight for 4 weeks following normal diet (ND) and HFD. Behavioral tests were performed after 4 weeks. Animals were sacrificed to collect brain samples. Biochemical, neurochemical and histopathological studies were performed. HFD increased food intake and body weight. The exploratory activity was reduced and anxiety like behavior was observed in HFD treated animals. Activity of antioxidant enzymes was decreased while oxidative stress marker and serotonin metabolism in the brain of rat were increased in HFD treated animals than ND fed rats. Morphology of the brain was also altered by HFD administration. Conversely, Niacin treated animals decreased food intake and % growth rate, increased exploratory activity, produced anxiolytic effects, decreased oxidative stress and increased antioxidant enzyme and 5-HT levels following HFD. Morphology of brain is also normalized by the treatment of Niacin following HFD. In-silico studies showed that Niacin has a potential binding affinity with degradative enzyme of 5-HT i.e. monoamine oxidase (MAO) A and B with an energy of ~ - 4.5 and - 5.0 kcal/mol respectively. In conclusion, the present study showed that Niacin enhanced motor activity, produced anxiolytic effect, and reduced oxidative stress, appetite, growth rate, increased antioxidant enzymes and normalized serotonin system and brain morphology following HFD intake. In-silico studies suggested that increase 5-HT was associated with the binding of MAO with Niacin subsequentially an inhibition of the degradation of monoamine. It is suggested that Niacin has a great antioxidant potential and could be a good therapy for the treatment of HFD induced obesity.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ammara Batool
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Aqsa Noor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saima Khaliq
- Department of Biochemistry, Faculty of Science, Science and Technology, Federal Urdu University of Arts, Karachi, 75270, Pakistan
| | - Sana Aurangzeb
- Department of Biochemistry, Faculty of Science, University of Karachi, Karachi, 75270, Pakistan
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
19
|
Chu F, Yang W, Li Y, Lu C, Jiao Z, Bu K, Liu Z, Sun H, Sun D. Subchronic Arsenic Exposure Induces Behavioral Impairments and Hippocampal Damage in Rats. TOXICS 2023; 11:970. [PMID: 38133371 PMCID: PMC10747731 DOI: 10.3390/toxics11120970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
This study investigated the effects of subchronic arsenic exposure on behavior, neurological function, and hippocampal damage in rats. Thirty-two male Wistar rats were divided into four groups and exposed to different concentrations of arsenic in their drinking water for 12 weeks, while weekly water intake and body weight were recorded. Various neurobehavioral tests were conducted, evaluating overall activity levels, exploratory behavior, short-term memory, spatial learning and memory, anxiety-like behavior, and depressive-like states. Arsenic levels in urine, serum, and brain tissue were measured, and histopathological analysis assessed hippocampal damage using hematoxylin and eosin staining. The results demonstrated that arsenic exposure did not significantly affect overall activity or exploratory behavior. However, it impaired short-term memory and spatial learning and memory functions. Arsenic-exposed rats exhibited increased anxiety-like behavior and a depressive-like state. Arsenic levels increased dose-dependently in urine, serum, and brain tissue. The histopathological examinations revealed significant hippocampal damage, including neuronal shrinkage, cell proliferation, irregular structure, disordered arrangement, and vacuolation. These findings emphasize the importance of understanding the impact of arsenic exposure on behavior and brain health, highlighting its potential neurological consequences.
Collapse
Affiliation(s)
- Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (W.Y.); (Y.L.); (C.L.); (K.B.); (Z.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (W.Y.); (Y.L.); (C.L.); (K.B.); (Z.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Yang Li
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (W.Y.); (Y.L.); (C.L.); (K.B.); (Z.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (W.Y.); (Y.L.); (C.L.); (K.B.); (Z.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Zhe Jiao
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
- Institute for Kashin Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Keming Bu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (W.Y.); (Y.L.); (C.L.); (K.B.); (Z.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Zhipeng Liu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (W.Y.); (Y.L.); (C.L.); (K.B.); (Z.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (W.Y.); (Y.L.); (C.L.); (K.B.); (Z.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (W.Y.); (Y.L.); (C.L.); (K.B.); (Z.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| |
Collapse
|
20
|
Hamdi E, Muñiz-Gonzalez AB, Hidouri S, Bermejo AM, Sakly M, Venero C, Amara S. Prevention of neurotoxicity and cognitive impairment induced by zinc nanoparticles by oral administration of saffron extract. J Anim Physiol Anim Nutr (Berl) 2023; 107:1473-1494. [PMID: 37246965 DOI: 10.1111/jpn.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/29/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
The accumulation of relatively higher dose of zinc oxide nanoparticles in brain was reported to produce neurotoxicity. Indeed, nanoparticles have a high ability to penetrate biological membranes and be uptaken by cells, which may cause cell disorders and physiological dysfunctions. The aim of the current study was to evaluate, whether oral administration of saffron extract, in rats, can protect from neurotoxicity and behavioural disturbances induced by chronic administration of ZnO-NPs. Daily oral administration of ZnO-NPs was performed for 21 consecutive days to induce oxidative stress-like situation. Then after the saffron extract was concomitantly administrated in several rat groups to overcome the nanotoxicological effect induced by ZnO-NPs. In the frontal cortex, the hippocampus and the cerebellum, ZnO-NPs induced a H2 O2 -oxydative stress-like effect reflected in reduced enzymatic activities of catalase, superoxide dismutase and glutathione S-transferase, and decreased acetylcholinesterase activity. In addition, increased levels of proinflammatory interleukins IL-6 and IL-1-⍺ occurred in the hippocampus, reveal the existence of brain inflammation. The concomitant administration of saffron extract to animals exposed to ZnO-NPs prevented the enhanced anxiety-related to the behaviour in the elevated plus-maze test, the open field test and preserved spatial learning abilities in the Morris water maze. Moreover, animals exposed to ZnO-NPs and saffron showed abnormal activity of several antioxidant enzymes as well as acetylcholinesterase activity, an effect that may underly the preserved anxiety-like behaviour and spatial learning abilities observed in these animals. Saffron extract has a potential beneficial therapeutic effect: antioxidant, anti-inflammatory and neuroprotective agent.
Collapse
Affiliation(s)
- Essia Hamdi
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Department of Mathematical and Fluid Physics, Environmental Toxicology and Biology Group, UNED, Madrid, Spain
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ana-Belén Muñiz-Gonzalez
- Department of Mathematical and Fluid Physics, Environmental Toxicology and Biology Group, UNED, Madrid, Spain
| | - Slah Hidouri
- Department of Chemistry, Faculté des Sciences de Bizerte, Zarzouna, Tunisie
| | - Alberto M Bermejo
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Mohsen Sakly
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Salem Amara
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Department of Natural and Applied Sciences in Afif, Afif, Faculty of Sciences and Humanities, Shaqra University, Sahqra, Saudi Arabia
| |
Collapse
|
21
|
Pang X, Xu Y, Xie S, Zhang T, Cong L, Qi Y, Liu L, Li Q, Mo M, Wang G, Du X, Shen H, Li Y. Gallic Acid Ameliorates Cognitive Impairment Caused by Sleep Deprivation through Antioxidant Effect. Exp Neurobiol 2023; 32:285-301. [PMID: 37749929 PMCID: PMC10569142 DOI: 10.5607/en23015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 09/27/2023] Open
Abstract
Sleep deprivation (SD) has a profound impact on the central nervous system, resulting in an array of mood disorders, including depression and anxiety. Despite this, the dynamic alterations in neuronal activity during sleep deprivation have not been extensively investigated. While some researchers propose that sleep deprivation diminishes neuronal activity, thereby leading to depression. Others argue that short-term sleep deprivation enhances neuronal activity and dendritic spine density, potentially yielding antidepressant effects. In this study, a two-photon microscope was utilized to examine the calcium transients of anterior cingulate cortex (ACC) neurons in awake SD mice in vivo at 24-hour intervals. It was observed that SD reduced the frequency and amplitude of Ca2+ transients while increasing the proportions of inactive neurons. Following the cessation of sleep deprivation, neuronal calcium transients demonstrated a gradual recovery. Moreover, whole-cell patch-clamp recordings revealed a significant decrease in the frequency of spontaneous excitatory post-synaptic current (sEPSC) after SD. The investigation also assessed several oxidative stress parameters, finding that sleep deprivation substantially elevated the level of malondialdehyde (MDA), while simultaneously decreasing the expression of Nuclear Factor erythroid 2-Related Factor 2 (Nrf2) and activities of Superoxide dismutase (SOD) in the ACC. Importantly, the administration of gallic acid (GA) notably mitigated the decline of calcium transients in ACC neurons. GA was also shown to alleviate oxidative stress in the brain and improve cognitive impairment caused by sleep deprivation. These findings indicate that the calcium transients of ACC neurons experience a continuous decline during sleep deprivation, a process that is reversible. GA may serve as a potential candidate agent for the prevention and treatment of cognitive impairment induced by sleep deprivation.
Collapse
Affiliation(s)
- Xiaogang Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yifan Xu
- Department of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shuoxin Xie
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianshu Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuchen Qi
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lubing Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingjun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mei Mo
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guimei Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiuwei Du
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Shen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Cellular Biology, School of Basic Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
22
|
Wang W, Ige OO, Ding Y, He M, Long P, Wang S, Zhang Y, Wen X. Insights into the potential benefits of triphala polyphenols toward the promotion of resilience against stress-induced depression and cognitive impairment. Curr Res Food Sci 2023; 6:100527. [PMID: 37377497 PMCID: PMC10291000 DOI: 10.1016/j.crfs.2023.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In response to environmental challenges, stress is a common reaction, but dysregulation of the stress response can lead to neuropsychiatric disorders, including depression and cognitive impairment. Particularly, there is ample evidence that overexposure to mental stress can have lasting detrimental consequences for psychological health, cognitive function, and ultimately well-being. In fact, some individuals are resilient to the same stressor. A major benefit of enhancing stress resilience in at-risk groups is that it may help prevent the onset of stress-induced mental health problems. A potential therapeutic strategy for maintaining a healthy life is to address stress-induced health problems with botanicals or dietary supplements such as polyphenols. Triphala, also known as Zhe Busong decoction in Tibetan, is a well-recognized Ayurvedic polyherbal medicine comprising dried fruits from three different plant species. As a promising food-sourced phytotherapy, triphala polyphenols have been used throughout history to treat a variety of medical conditions, including brain health maintenance. Nevertheless, a comprehensive review is still lacking. Here, the primary objective of this review article is to provide an overview of the classification, safety, and pharmacokinetics of triphala polyphenols, as well as recommendations for the development of triphala polyphenols as a novel therapeutic strategy for promoting resilience in susceptible individuals. Additionally, we summarize recent advances demonstrating that triphala polyphenols are beneficial to cognitive and psychological resilience by regulating 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) receptors, gut microbiota, and antioxidant-related signaling pathways. Overall, scientific exploration of triphala polyphenols is warranted to understand their therapeutic efficacy. In addition to providing novel insights into the mechanisms of triphala polyphenols for promoting stress resilience, blood brain barrier (BBB) permeability and systemic bioavailability of triphala polyphenols also need to be improved by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of triphala polyphenols' beneficial effects for preventing and treating cognitive impairment and psychological dysfunction.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Olufola Oladoyin Ige
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, 610021, China
| |
Collapse
|
23
|
Babić Leko M, Langer Horvat L, Španić Popovački E, Zubčić K, Hof PR, Šimić G. Metals in Alzheimer's Disease. Biomedicines 2023; 11:1161. [PMID: 37189779 PMCID: PMC10136077 DOI: 10.3390/biomedicines11041161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The role of metals in the pathogenesis of Alzheimer's disease (AD) is still debated. Although previous research has linked changes in essential metal homeostasis and exposure to environmental heavy metals to the pathogenesis of AD, more research is needed to determine the relationship between metals and AD. In this review, we included human studies that (1) compared the metal concentrations between AD patients and healthy controls, (2) correlated concentrations of AD cerebrospinal fluid (CSF) biomarkers with metal concentrations, and (3) used Mendelian randomization (MR) to assess the potential metal contributions to AD risk. Although many studies have examined various metals in dementia patients, understanding the dynamics of metals in these patients remains difficult due to considerable inconsistencies among the results of individual studies. The most consistent findings were for Zn and Cu, with most studies observing a decrease in Zn levels and an increase in Cu levels in AD patients. However, several studies found no such relation. Because few studies have compared metal levels with biomarker levels in the CSF of AD patients, more research of this type is required. Given that MR is revolutionizing epidemiologic research, additional MR studies that include participants from diverse ethnic backgrounds to assess the causal relationship between metals and AD risk are critical.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Khalid AA, Jabeen Q, Javaid F. Anxiolytic and Antidepressant Potential of Methanolic Extract of Neurada procumbens Linn. in Mice. Dose Response 2023; 21:15593258231169584. [PMID: 37063345 PMCID: PMC10102953 DOI: 10.1177/15593258231169584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
Neurada procumbens Linn. possesses a wide range of phytochemical and bioactive entities such as flavonoids and polyphenols that decrease the oxidative stress and enhance synaptic plasticity, resulting in accelerated healing processes. Almost all parts of the plant have been used in the traditional system of medicine for various disorders including its use as an anticonvulsant, sexual tonic, and anti-rheumatic agent. This study is designed to evaluate the anxiolytic and antidepressant activities of the methanolic crude extract of N. procumbens (Np.Cr) based on its use in traditional medicine and presence of the phytochemical constituents. Aqueous methanolic extract of Np.Cr was prepared under reduced pressure using rotary evaporator, and different chemical constituents were identified by phytochemical screening. Light/dark exploration, elevated plus maze (EPM), and hole board tests were used to assess the anxiolytic activity, while forced swim and tail suspension tests were used to assess the antidepressant potential of the crude extract. Treatment groups treated individually with 3 different doses; i.e., 50, 100, and 200 mg/kg of Np.Cr, showed a dose-dependent increase in time spent in light compartment and in open arms as well as increased number of head poking by the experimental animals. Np.Cr showed significant antidepressant potential (P < .05) as evident from marked decrease in behavioral despair. Findings of the present study assure that N. procumbens possess significant anxiolytic and antidepressant potential with the demands of further investigations to identify the active compound(s) responsible for these pharmacological effects.
Collapse
Affiliation(s)
- Ahmed Awais Khalid
- Department of Pharmacology, Faculty
of Pharmacy, the Islamia University of
Bahawalpur, Bahawalpur, Pakistan
- Primary and Secondary Healthcare
Department, Government of Punjab, Lahore, Pakistan
- Ahmed Awais Khalid, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Qaiser Jabeen
- Department of Pharmacology, Faculty
of Pharmacy, the Islamia University of
Bahawalpur, Bahawalpur, Pakistan
| | - Faraza Javaid
- Department of Pharmacology, Faculty
of Pharmacy, the Islamia University of
Bahawalpur, Bahawalpur, Pakistan
- Department of Pharmacology,
Quaid-e-Azam College of Pharmacy, Sahiwal, Sahiwal
| |
Collapse
|
25
|
Wang YH, Wang YQ, Yu XG, Lin Y, Liu JX, Wang WY, Yan CH. Chronic environmental inorganic arsenic exposure causes social behavioral changes in juvenile zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161296. [PMID: 36592900 DOI: 10.1016/j.scitotenv.2022.161296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is a metalloid commonly found worldwide. Environmental As exposure may cause potential health hazards and behavioral changes in humans and animals. However, the effects of environmental As concentrations on social behavior, especially during the juvenile stage, are unclear. In this study, we observed behavioral changes in juvenile zebrafish after 28 days of exposure to inorganic As (NaAsO2 100 and 500 ppb) in water, especially anxiety and social deficits. Additionally, the level of oxidative stress in the zebrafish brain after As treatment increased, the content of dopamine (DA) decreased, and the transcription level of genes involved in DA metabolism with the activity of monoamine oxidase (MAO) increased. Oxidative stress is a recognized mechanism of nerve damage induced by As exposure. The zebrafish were exposed to N-acetylcysteine (NAC) to reduce As exposure-induced oxidative stress. The results showed improvements in social behavior, DA content, MAO activity, and gene transcription in zebrafish. In conclusion, environmental As exposure can induce behavioral abnormalities, such as anxiety and social deficits in zebrafish, which may be caused by As-induced oxidative stress altering gene transcription levels, causing an increase in MAO activity and a decrease in DA.
Collapse
Affiliation(s)
- Yi-Hong Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ya-Qian Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Gang Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wei-Ye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
27
|
Shalaby OE, Ahmed YH, Mekkawy AM, Mahmoud MY, Khalil HMA, Elbargeesy GA. Assessment of the neuroprotective effect of selenium-loaded chitosan nanoparticles against silver nanoparticles-induced toxicity in rats. Neurotoxicology 2023; 95:232-243. [PMID: 36822375 DOI: 10.1016/j.neuro.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND With the recent growth in the applications of silver nanoparticles (Ag-NPs), worries about their harmful effects are increasing. Selenium plays a vital role in the antioxidant defense system as well as free radical scavenging activity. OBJECTIVES This study aims to inspect the neuroprotective effect of selenium-loaded chitosan nanoparticles (CS-SeNPs) against the adverse impact of Ag-NPs on brain tissue in adult rats. DESIGN Rats were divided into four groups: group I (control) was administered distilled water (0.5 mL/kg), group II was administered Ag-NPs (100 mg/kg), group III was administered Ag-NPs (100 mg/kg) and CS- SeNPs (0.5 mg/kg) and group IV received only CS- SeNPs (0.5 mg/kg) daily by oral gavage. After 60 days, rats were subjected to behavioral assessment and then euthanized. Brain tissues were obtained for estimation of total antioxidant capacity (TAC), malondialdehyde (MDA), 8-hydroxy-2-deoxy Guanosine (8-OHdG), and Nuclear Factor Erythroid 2 Like Protein 2 (Nrf2). Also, histological examination of the brain and immunohistochemical detection of glial fibrillary acidic protein (GFAP) were investigated RESULTS: exposure to Ag-NPs induced marked neurotoxicity in the brain tissue of rats that was manifested by decreased levels of TAC and Nrf2 with increased levels of MDA and 8-OHdG. Also, various pathological lesions with an increase in the number of GFAP immunoreactive cells were detected. While brain tissue of rats received Ag-NPs plus CS-SeNPs group (III) revealed significantly fewer pathological changes. CONCLUSION Co-administration of CS-SeNPs significantly ameliorates most of the Ag-NPs-induced brain damage.
Collapse
Affiliation(s)
- Omnia E Shalaby
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Aya M Mekkawy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - G A Elbargeesy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| |
Collapse
|
28
|
Spohr L, de Aguiar MSS, Bona NP, Luduvico KP, Alves AG, Domingues WB, Blödorn EB, Bortolatto CF, Brüning CA, Campos VF, Stefanello FM, Spanevello RM. Blueberry Extract Modulates Brain Enzymes Activities and Reduces Neuroinflammation: Promising Effect on Lipopolysaccharide-Induced Depressive-Like Behavior. Neurochem Res 2023; 48:846-861. [PMID: 36357747 DOI: 10.1007/s11064-022-03813-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Major depressive disorder (MDD) is one of the most common neuropsychiatric disorders with high rates of prevalence and mortality. MDD is pathophysiologically complex, and treatment options are limited. Blueberries are rich in polyphenols and have neuroprotective potential. The aim of this study was to investigate the effects of blueberry extract on neuroinflammatory and neuroplasticity parameters, as well as Na+/K+-ATPase, monoamine oxidase-A (MAO-A), and acetylcholinesterase (AChE) activities in the cerebral cortex and hippocampus of mice subject to lipopolysaccharide (LPS)-induced depressive-like behavior. We also analyzed the interaction between anthocyanins and indoleamine 2 3-dioxygenase (IDO). Male Swiss mice (60-day-old) received vehicle, fluoxetine (20 mg/kg), or blueberry extract (100 or 200 mg/kg) intragastrically for 7 days before intraperitoneal LPS (0.83 mg/kg) injection. Twenty-four hours after LPS administration, the mice were subjected to behavioral tests. Both fluoxetine and blueberry extract (200 mg/kg) decreased the immobility time in the forced swim test, without affecting locomotor activity. Fluoxetine attenuated the decrease of Na+/K+-ATPase in the cerebral cortex, while blueberry extract promoted this same effect in the hippocampus. Additionally, fluoxetine and blueberry extract attenuated the decrease in the activity of MAO-A in the hippocampus. Blueberry extract (200 mg/kg) also prevented LPS-induced increase in AChE activity in the hippocampus as well as LPS upregulation of relative mRNA expression of tumor necrosis factor alpha, interleukin (IL)-1β, and IL-10 in the cerebral cortex. Molecular docking analysis revealed binding sites for malvidin 3-galactoside (- 7.8 kcal/mol) and malvidin 3-glucoside (- 7.9 kcal/mol) residues with IDO. Taken together, these results indicate that blueberry extract improved depression-like behavior and attenuated the neurochemical and molecular changes in the brains of mice challenged with LPS.
Collapse
Affiliation(s)
- Luiza Spohr
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil.
| | - Mayara Sandrielly Soares de Aguiar
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil
| | - Natália Pontes Bona
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Karina Pereira Luduvico
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amália Gonçalves Alves
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William Borges Domingues
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo Bierhals Blödorn
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - César Augusto Brüning
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Bioquímica e Neurofarmacologia Molecular, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Prédio 29, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil.
| |
Collapse
|
29
|
Hamdan DI, Tawfeek N, El-Shiekh RA, Khalil HMA, Mahmoud MY, Bakr AF, Zaafar D, Farrag N, Wink M, El-Shazly AM. Salix subserrata Bark Extract-Loaded Chitosan Nanoparticles Attenuate Neurotoxicity Induced by Sodium Arsenate in Rats in Relation with HPLC-PDA-ESI-MS/MS Profile. AAPS PharmSciTech 2022; 24:15. [PMID: 36522541 DOI: 10.1208/s12249-022-02478-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Pollution is a worldwide environmental risk. Arsenic (As) is an environmental pollutant with a major health concern due to its toxic effects on multiple body organs, including the brain. Humans are exposed to As through eating contaminated food and water or via skin contact. Salix species (willow) are plants with medicinal efficacy. Salix subserrata Willd bark extract-loaded chitosan nanoparticles (SBE.CNPs) was formulated, characterized, and evaluated against As-induced neurotoxicity. The stem bark was selected for nanoparticle formulation based on HPLC-PDA-ESI-MS/MS profiling and in vitro antioxidant assessment using free radical scavenging activity. SBE.CNPs demonstrated an average un-hydrated diameter of 193.4 ± 24.5 nm and zeta potential of + 39.6 ± 0.4 mV with an encapsulation efficiency of 83.7 ± 4.3%. Compared to As-intoxicated rats, SBE.CNP-treated rats exhibited anxiolytic activity and memory-boosting as evidenced in open field test, light-dark activity box, and Y-maze. Also, it increased the antioxidant biomarkers, including superoxide dismutase and glutathione peroxidase associated with reducing the malondialdehyde levels and apoptotic activity. Besides this, SBE.CNPs maintained the brain architecture and downregulated both nuclear factor-kappa B and heme oxygenase-1 expression. These results suggest that SBE.CNP administration showed promising potent neuroprotective and antioxidative efficiencies against arsenic-induced oxidative threats.
Collapse
Affiliation(s)
- Daila I Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Shibin Elkom, 32511, Egypt.
| | - Nora Tawfeek
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alaa F Bakr
- Pathology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Information and Technology, El Mokattam, Egypt
| | - Nawaal Farrag
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Assem Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.,Faculty of Pharmacy, El Saleheya El Gadida University, 44813 El Saleheya El Gadida, El Saleheya, Egypt
| |
Collapse
|
30
|
Lv S, Zhao Y, Wang L, Yu Y, Li J, Huang Y, Xu W, Sun G, Dai W, Zhao T, Bi D, Ma Y, Sun P. Antidepressant Active Components of Bupleurum chinense DC-Paeonia lactiflora Pall Herb Pair: Pharmacological Mechanisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1024693. [PMID: 36408279 PMCID: PMC9668458 DOI: 10.1155/2022/1024693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2024]
Abstract
Depression is a serious psychological disorder with a rapidly increasing incidence in recent years. Clinically, selective serotonin reuptake inhibitors are the main therapy. These drugs, have serious adverse reactions, however. Traditional Chinese medicine has the characteristics of multiple components, targets, and pathways, which has huge potential advantages for the treatment of depression. The antidepressant potential of the herbal combination of Bupleurum chinense DC (Chaihu) and Paeonia lactiflora Pall (Baishao) has been extensively studied previously. In this review, we summarized the antidepressant active components and mechanism of Chaihu-Baishao herb pair. We found that it works mainly through relieving oxidative stress, regulating HPA axis, and protecting neurons. Nevertheless, current research of this combined preparation still faces many challenges. On one hand, most of the current studies only stay at the level of animal models, lacking of sufficient clinical double-blind controlled trials for further verification. In addition, studies on the synergistic effect between different targets and signaling pathways are scarce. On the other hand, this preparation has numerous defects such as poor stability, low solubility, and difficulty in crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Shimeng Lv
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yifan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Le Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yihong Yu
- School of Management, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiaxin Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yufei Huang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Wenhua Xu
- Preventive Treatment Center, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen 518027, China
| | - Geqin Sun
- Zhongshan Torch Development Zone People's Hospital, Zhongshan 528400, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan 528400, China
| | - Tingting Zhao
- School of Foreign Language, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dezhong Bi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Sun
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
31
|
Phenolic Acids as Antidepressant Agents. Nutrients 2022; 14:nu14204309. [PMID: 36296993 PMCID: PMC9610055 DOI: 10.3390/nu14204309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
Depression is a psychiatric disorder affecting the lives of patients and their families worldwide. It is an important pathophysiology; however, the molecular pathways involved are not well understood. Pharmacological treatment may promote side effects or be ineffective. Consequently, efforts have been made to understand the molecular pathways in depressive patients and prevent their symptoms. In this context, animal models have suggested phytochemicals from medicinal plants, especially phenolic acids, as alternative treatments. These bioactive molecules are known for their antioxidant and antiinflammatory activities. They occur in some fruits, vegetables, and herbal plants. This review focused on phenolic acids and extracts from medicinal plants and their effects on depressive symptoms, as well as the molecular interactions and pathways implicated in these effects. Results from preclinical trials indicate the potential of phenolic acids to reduce depressive-like behaviour by regulating factors associated with oxidative stress, neuroinflammation, autophagy, and deregulation of the hypothalamic-pituitary-adrenal axis, stimulating monoaminergic neurotransmission and neurogenesis, and modulating intestinal microbiota.
Collapse
|
32
|
Samad N, Nasir A, Rehman MHU, Bhatti SA, Imran I. Adenosine protects D-galactose induced alterations in rat model of aging via attenuating neurochemical profile and redox status. Metab Brain Dis 2022; 37:2483-2496. [PMID: 35870061 DOI: 10.1007/s11011-022-01049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 07/07/2022] [Indexed: 10/16/2022]
Abstract
Aging is the process that every organism faces. The aging model of brain has been developed by the use of d-galactose (d-Gal). Adenosine (Ad) being a neuroprotective agent that has been utilized in treatment of various neurological disorders. The aim of current study is to evaluate the outcome of Ad on d-Gal induced neurotoxicity which caused behavioral deficits, memory impairment and oxidative stress. Rats were treated with d-Gal at a dose of 300 mg/ml/kg and Ad 1 mg/ml/kg; intraperitoneally for 28 days. Behavioral assessment was performed after the treatment period. Animals were sacrificed after behavioral tests and their brains were collected, hippocampus were removed for biochemical and neurochemical analysis. The results showed that administration of Ad ameliorates the negative effects of d-Gal induced aging in various behavioral tests and increased the time spent in the open arm and light box in elevated plus maze (EPM) and light dark activity (LDA) tests respectively indicate anxiolytic effect; increased the mobility time in tail suspension test (TST) shows antidepressant effect; decreased escape latencies in Morris water maze (MWM) acquisition trials, increase entries and time spent in the target quadrant suggests improvement in learning ability of animals. Administration of Ad also decreased malondialdehyde (MDA) levels, increased antioxidant enzymes activity; decreased acetylcholinesterase (AChE) activity, increased 5-hydroxytryptamine (5-HT, serotonin) metabolism and normalized histopathological alteration in the hippocampus. It is concluded that anxiety, depression and memory impairment induced by d-Gal were protected by Ad through its antioxidant and neuro-modulatory effects.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Arooj Nasir
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | | | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
33
|
Wisessaowapak C, Worasuttayangkurn L, Maliphol K, Nakareangrit W, Cholpraipimolrat W, Nookabkaew S, Watcharasit P, Satayavivad J. The 28-day repeated arsenic exposure increases tau phosphorylation in the rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103974. [PMID: 36089238 DOI: 10.1016/j.etap.2022.103974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 05/10/2023]
Abstract
Herein, we examined whether prolonged arsenic exposure altered tau phosphorylation in the brain of Sprague Dawley rats expressing endogenous wild-type tau. The results showed that daily intraperitoneal injections of 2.5 mg/kg BW sodium arsenite over 28 days caused arsenic accumulation in the rat brain. Interestingly, we found an increase in tau phosphorylation at the Tau 1 region (189-207) and S202 in the hippocampus, S404 in the cerebral cortex, and S396 and S404 in the cerebellum of arsenic-treated rats. Additionally, arsenic increased active ERK1/2 phosphorylation at T202/Y204 in the hippocampus, cerebral cortex, and cerebellum. Meanwhile, we detected increasing active JNK phosphorylation at T183/Y185 in the hippocampus and cerebellum. Moreover, p35, a neuron-specific activator of CDK5, was also elevated in the cerebellum of arsenic-treated rats, suggesting that CDK5 activity may be increased by arsenic. These results suggested that arsenic may induce tau phosphorylation through the activation of tau kinases, ERK1/2, JNK, and CDK5. Together, the findings from this study demonstrated that prolonged arsenic exposure is implicated in neurodegeneration by promoting tau phosphorylation in the rat brain and points toward a possible prevention strategy against neurodegeneration induced by environmental arsenic exposure.
Collapse
Affiliation(s)
| | | | | | - Watanyoo Nakareangrit
- Translational Research Unit, Chulabhorn Research Institute, 54 KamphaengPhet6 Rd, Bangkok 10210 Thailand
| | | | - Sumontha Nookabkaew
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Piyajit Watcharasit
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand; Chulabhorn Graduate Institute, 906 KamphaengPhet6 Rd, Bangkok, 10210 Thailand.
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand; Chulabhorn Graduate Institute, 906 KamphaengPhet6 Rd, Bangkok, 10210 Thailand
| |
Collapse
|
34
|
Fei HX, Qian CF, Wu XM, Wei YH, Huang JY, Wei LH. Role of micronutrients in Alzheimer's disease: Review of available evidence. World J Clin Cases 2022; 10:7631-7641. [PMID: 36158513 PMCID: PMC9372870 DOI: 10.12998/wjcc.v10.i22.7631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/29/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common age-related neurodegenerative disorders that have been studied for more than 100 years. Although an increased level of amyloid precursor protein is considered a key contributor to the development of AD, the exact pathogenic mechanism remains known. Multiple factors are related to AD, such as genetic factors, aging, lifestyle, and nutrients. Both epidemiological and clinical evidence has shown that the levels of micronutrients, such as copper, zinc, and iron, are closely related to the development of AD. In this review, we summarize the roles of eight micronutrients, including copper, zinc, iron, selenium, silicon, manganese, arsenic, and vitamin D in AD based on recently published studies.
Collapse
Affiliation(s)
- Hong-Xin Fei
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Chao-Fan Qian
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Xiang-Mei Wu
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Yu-Hua Wei
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Jin-Yu Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| | - Li-Hua Wei
- Department of Pathology, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
35
|
Wen L, Tang L, Zhang M, Wang C, Li S, Wen Y, Tu H, Tian H, Wei J, Liang P, Yang C, Li G, Gao Y. Gallic Acid Alleviates Visceral Pain and Depression via Inhibition of P2X7 Receptor. Int J Mol Sci 2022; 23:ijms23116159. [PMID: 35682841 PMCID: PMC9181225 DOI: 10.3390/ijms23116159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic visceral pain can occur in many disorders, the most common of which is irritable bowel syndrome (IBS). Moreover, depression is a frequent comorbidity of chronic visceral pain. The P2X7 receptor is crucial in inflammatory processes and is closely connected to developing pain and depression. Gallic acid, a phenolic acid that can be extracted from traditional Chinese medicine, has been demonstrated to be anti-inflammatory and anti-depressive. In this study, we investigated whether gallic acid could alleviate comorbid visceral pain and depression by reducing the expression of the P2X7 receptor. To this end, the pain thresholds of rats with comorbid visceral pain and depression were gauged using the abdominal withdraw reflex score, whereas the depression level of each rat was quantified using the sucrose preference test, the forced swimming test, and the open field test. The expressions of the P2X7 receptor in the hippocampus, spinal cord, and dorsal root ganglion (DRG) were assessed by Western blotting and quantitative real-time PCR. Furthermore, the distributions of the P2X7 receptor and glial fibrillary acidic protein (GFAP) in the hippocampus and DRG were investigated in immunofluorescent experiments. The expressions of p-ERK1/2 and ERK1/2 were determined using Western blotting. The enzyme-linked immunosorbent assay was utilized to measure the concentrations of IL-1β, TNF-α, and IL-10 in the serum. Our results demonstrate that gallic acid was able to alleviate both pain and depression in the rats under study. Gallic acid also reduced the expressions of the P2X7 receptor and p-ERK1/2 in the hippocampi, spinal cords, and DRGs of these rats. Moreover, gallic acid treatment decreased the serum concentrations of IL-1β and TNF-α, while raising IL-10 levels in these rats. Thus, gallic acid may be an effective novel candidate for the treatment of comorbid visceral pain and depression by inhibiting the expressions of the P2X7 receptor in the hippocampus, spinal cord, and DRG.
Collapse
Affiliation(s)
- Lequan Wen
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (L.W.); (L.T.); (H.T.); (C.Y.)
| | - Lirui Tang
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (L.W.); (L.T.); (H.T.); (C.Y.)
| | - Mingming Zhang
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (M.Z.); (Y.W.); (G.L.)
| | - Congrui Wang
- Second Clinic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (C.W.); (S.L.); (P.L.)
| | - Shujuan Li
- Second Clinic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (C.W.); (S.L.); (P.L.)
| | - Yuqing Wen
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (M.Z.); (Y.W.); (G.L.)
| | - Hongcheng Tu
- Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (H.T.); (J.W.)
| | - Haokun Tian
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (L.W.); (L.T.); (H.T.); (C.Y.)
| | - Jingyi Wei
- Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (H.T.); (J.W.)
| | - Peiwen Liang
- Second Clinic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (C.W.); (S.L.); (P.L.)
| | - Changsen Yang
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (L.W.); (L.T.); (H.T.); (C.Y.)
| | - Guodong Li
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (M.Z.); (Y.W.); (G.L.)
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China; (M.Z.); (Y.W.); (G.L.)
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, 461 Bayi Avenue, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-86360586
| |
Collapse
|
36
|
Abstract
Arsenic toxicity is a major concern due to its deleterious consequences for human health. Rapid industrialization also has weakened the quality of the environment by introducing pollutants that may disrupt balanced ecosystems, adversely and irreversibly impacting humans, plants, and animals. Arsenic, an important toxicant among all environmental hazards, can lead to several detrimental effects on cells and organs, impacting the overall quality of life. Nevertheless, arsenic also has a rich history as a chemotherapeutic agent used in ancient days for the treatment of diseases such as malaria, cancer, plague, and syphilis when other chemotherapeutic agents were yet to be discovered. Arsenicosis-mediated disorders remain a serious problem due to the lack of effective therapeutic options. Initially, chelation therapy was used to metabolically eliminate arsenic by forming a complex, but adverse effects limited their pharmacological use. More recently, plant-based products have been found to provide significant relief from the toxic effects of arsenic poisoning. They act by different mechanisms affecting various cellular processes. Phytoconstituents such as curcumin, quercetin, diallyl trisulfide, thymoquinone, and others act via various molecular pathways, primarily by attenuating oxidative damage, membrane damage, DNA damage, and proteinopathies. Nonetheless, most of the phytochemicals reviewed here protect against the adverse effects of metal or metalloid exposure, supporting their consideration as alternatives to chelation therapy. These agents, if used prophylactically and in conjunction with other chemotherapeutic agents, may provide an effective approach for management of arsenic toxicity. In a few instances, such strategies like coadministration of phytochemicals with a known chelating agent have led to more pronounced elimination of arsenic from the body with lesser off-site adverse effects. This is possible because combination treatment ensures the use of a reduced dose of chelating agent with a phytochemical without compromising treatment. Thus, these therapies are more practical than conventional therapeutic agents in ameliorating arsenic-mediated toxicity. This review summarizes the potential of phytochemicals in alleviating arsenic toxicity on the basis of available experimental and clinical evidence.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ankita Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226020, India
| | - Swaran J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226020, India
| |
Collapse
|
37
|
Hibiscus sabdariffa extract improves hepatic steatosis, partially through IRS-1/Akt and Nrf2 signaling pathways in rats fed a high fat diet. Sci Rep 2022; 12:7022. [PMID: 35487948 PMCID: PMC9054782 DOI: 10.1038/s41598-022-11027-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a major world-wide health problem and is characterized by lipid accumulation in the liver induced by high fat diet (HFD) consumption. It is usually associated with inflammation, oxidative stress, and insulin resistance. Roselle extract (Hibiscus sabdariffa) is an herb which is used in traditional medicine. However, further study is necessary to represent the mechanism of NAFLD and find new preventive strategies. This study aims to investigate the protective effects of roselle extract on NAFLD rat models. Male Sprague-Dawley rats (n = 35) were divided into 5 groups, control, HFD, HFD + Simvastatin (HFD + SIM), HFD + 250 mg/kg BW, and HFD + 500 mg/kg BW of roselle extract (HFD + R250 and HFD + R500, respectively). The results showed that roselle extract reduced hepatic lipid contents, de novo lipogenesis enzymes, microsomal triglyceride transfer protein, inflammatory cytokines, malondialdehyde, and increased antioxidant properties, transporter related with lipoprotein uptake, and insulin signal proteins. Comparing to SIM, the HFD + R500 group exhibited the greater benefit in terms of anti-hepatic steatosis, antioxidant properties, and an ability to improve insulin resistance. This study demonstrates that roselle extract improved antioxidant properties and attenuated hepatic steatosis, liver inflammation, oxidative stress, and insulin resistance in HFD-induced NAFLD in rats, which could be used for NAFLD prevention.
Collapse
|
38
|
Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H, Alhumaydhi FA, Simal-Gandara J. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101865. [DOI: 10.1016/j.jksus.2022.101865] [Citation(s) in RCA: 326] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
39
|
Bukhari SA, Yasmin A, Rasul A, Zahoor MA, Mustafa G, Al Farraj DA, Darwish NM, Aleya L, Rehman A. Identification of Ascorbic Acid and Gallic Acid as Novel Inhibitors of Secreted Frizzled-Related Protein for the Treatment of Obesity-Induced Type 2 Diabetes. Dose Response 2022; 20:15593258211069707. [PMID: 35145353 PMCID: PMC8822024 DOI: 10.1177/15593258211069707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/30/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) has been reported as major public health issue rising at an alarming rate worldwide, and obesity is the leading risk factor for the development of T2D. Secreted frizzled-related protein 4 (SFRP4) released with inflammatory mediators from adipose tissues constrains the exocytosis of insulin containing granules from the pancreatic islets that leads towards the development to T2D. The significant overexpression of SFRP4 in diabetic patients and its involvement in islet dysfunction suggest its critical role in the development of diabetes. Thus, this study was designed to explore the potential of ascorbic acid (AA) and gallic acid (GA) against SFRP4 for the treatment of diabetes. Molecular docking approach was used for the prediction of binding interactions of AA and GA at the active pocket of SFRP4. Docking analysis indicated strong binding interactions of AA and GA to the amino acid residues at the active site of SFRP4. A significant reduction in the level of SFRP4 was observed in transfected cells treated with AA and GA. For the evaluation of the cytotoxicity of AA and GA against HepG2 cells, MTT assay was performed. The results of MTT assay demonstrated that AA and GA are non-cytotoxic towards HepG2 cells at concentration of 15 μM. The oral administration of AA and GA to diet-induced obese mice caused significant reduction in body weight, blood glucose level, and SFRP4 expression. The results of this study suggest that AA and GA have potential for the treatment of obesity-induced T2D.
Collapse
Affiliation(s)
- Shazia Anwer Bukhari
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aysha Yasmin
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Dunia A. Al Farraj
- Faculty of science, Ain Shams University, Biochemistry Department, Cairo, Egypt
| | - Noura M. Darwish
- Faculty of science, Ain Shams University, Biochemistry Department, Cairo, Egypt
- Ministry of Health Laboratories, Tanta, Egypt
| | - Lotfi Aleya
- Laboratoire Chrono-Environnement, CNRS6249, Universite de Bourgogne Franche-Comte, Besancon, France
| | - Asim Rehman
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
40
|
Samad N, Rao T, Rehman MHU, Bhatti SA, Imran I. Inhibitory Effects of Selenium on Arsenic-Induced Anxiety-/Depression-Like Behavior and Memory Impairment. Biol Trace Elem Res 2022; 200:689-698. [PMID: 33745108 DOI: 10.1007/s12011-021-02679-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Elevated arsenic (As) contamination in drinking water was detected in many areas of Pakistan. The intoxication of As causes various neurological diseases in humans, which can be inhibited by the administration of potent antioxidants. Trace elements are also found in drinking water such as selenium (Se), which possess antioxidant potential. The main purpose of the current study is to find out the protective effect of Se against As toxicity which can cause anxiety- and depression-like behaviors as well as memory impairment. Thirty-six male rats were divided into six groups: (1) distilled water (dw)+dw, (2) dw+Se (0.175 mg/ml/kg), (3) dw+Se (0.35mg/ml/kg), (4) dw+As (2.5mg/ml/kg), (5) As (2.5mg/ml/kg) + Se (0.175 mg/ml/kg), and (6) As (2.5mg/ml/kg) + Se (0.35 mg/ml/kg). Rats were treated with respective treatment for 4 weeks. Sub-chronic treatment of As reduced time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and increased immobility time in forced swim test indicate anxiety- and/or depression-like behavior, respectively. Conversely, rats treated with As+Se (at both doses) increased time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and decreased immobility time in forced swim test indicate the anxiolytic and anti-depressive effect of Se, respectively. Co-administration of Se (0.175 and 0.35) inhibited As instigated reduction of spatial memory performed in Morris water maze. The reversal in the reduced level of malondialdehyde and activity of acetylcholinesterase in the hippocampus by Se was observed in As-treated animals, while the activity of antioxidant enzymes in the hippocampus was increased in As+Se than dw+As-treated animals. Histopathological studies have shown the reversal of hippocampus deterioration by Se in As-treated rats. The results may imply to prevent the intoxication of As instigated impairment in behavioral and biochemical indices by Se supplementation and/or increased safer intake.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Tazeen Rao
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | | | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
41
|
Samad N, Imran A, Bhatti SA, Imran I, Alqahtani F, Alasmari AF, Sivandzade F. Vitamin D2 protects acute and repeated noise stress induced behavioral, biochemical, and histopathological alterations: Possible antioxidant effect. Saudi J Biol Sci 2022; 29:601-609. [PMID: 35002456 PMCID: PMC8716964 DOI: 10.1016/j.sjbs.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Noise is an environmental stressor which causes distress and hearing loss in individuals residing in urban areas. Psychological deficits such as anxiety, depression, impaired memory and cognitive decline are caused by noise stress. Different vitamins have been used as a potential antioxidant for neuronal protection. In this study we investigate the anxiolytic, antidepressant and memory enhancing effect of vitamin D2 (Vit D2) following noise stress. Thirty-six albino rats were randomly divided into six groups. (i) Unstressed + corn oil (ii) Unstressed + Vit D2 (iii) Acute noise stress + corn oil (iv) Acute noise stress + Vit D2 (v) Repeated noise stress + corn oil (vi) Repeated noise stress + Vit D2. 600 IU/kg body weight of Vit D2 dosage was prepared in corn oil. Corn oil is used as vehicle and all the drugs administered via oral gavage till end of the experiment (day 16). Recorded sound of generator which was amplified by speakers and had 100 dB intensity was used as noise stress. Repeated stressed animals were exposed to noise (4-hrs) daily for 14 days, while acute stressed animals were exposed to noise (4-hrs) once after 14 days. Behavioral tests (elevated plus maze, light dark box, tail suspension test and Morris water maze) of all groups were performed after15 days treatment period. After behavioral tests rats received their last dosage and decapitated after 1-hr. Brain of all animals was removed and used for biochemical (oxidative stress biomarker, antioxidant enzymes and acetylcholinesterase) and histopathological estimations. Results show that Vit D2 decreased time spent in light box and open arm of light dark activity box and elevated plus maze test respectively (used for anxiety evaluation), decreased immobility time in tail suspension test (for depression) and improved cognitive ability evaluated by Morris water maze test in acute and repeated noise stressed rats. Furthermore, increased antioxidant enzymes activity, decreased lipid peroxidation and acetylcholinesterase activity were also observed in Vit D2 treated animals following acute and repeated noise stress. Normalization in histopathological studies was also observed in Vit D2 treated following acute and repeated noise stress. It is concluded that Vit D2 protects from noise stress induced behavioral, biochemical and histopathological impairment through its antioxidant potential.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Ayesha Imran
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Sheraz A Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Farzane Sivandzade
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
42
|
Samad N, Hafeez F, Imran I. D-galactose induced dysfunction in mice hippocampus and the possible antioxidant and neuromodulatory effects of selenium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5718-5735. [PMID: 34424474 DOI: 10.1007/s11356-021-16048-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Aging is an ultimate reality that everyone has to face. D-galactose (D-gal) has been used extensively to develop aging model. Trace elements such as selenium (Se) have been used as a potential antioxidant for neuro-protection. The present work aims to develop therapeutic agents such as Se for the treatment of aging-induced neurological ailments such as anxiety, depression, and memory impairment. For this purpose, mice were treated with D-gal at a dose of 300 mg/ml/kg and various doses of Se (0.175 and 0.35mg/ml/kg) for 28 days. Behavioral tests were monitored after treatment days. After the behavioral assessment, mice were decapitated and their brains were collected. Hippocampi were removed from the brain for biochemical, neurochemical, and histopathological analysis. The present findings of behavioral analysis showed that D-gal-induced anxiety- and depression-like symptoms were inhibited by both doses of Se. D-gal-induced memory alteration was also prevented by repeated doses of Se (0.175 and 0.35mg/ml/kg). Biochemical analysis showed that D-gal-induced increase of oxidative stress and inflammatory markers and decrease of antioxidant enzymes and total protein contents in the hippocampus were prevented by Se administration. An increase in the activity of acetylcholinesterase was also diminished by Se. The neurochemical assessment showed that D-gal-induced increased serotonin metabolism and decreased acetylcholine levels in the hippocampus were restored by repeated treatment of Se. Histopathological estimations also exhibited; normalization of D-gal induced neurodegenerative changes. It is concluded that D-gal-induced dysfunction in mice hippocampus caused anxiety, depression, memory impairment, oxidative stress, neuro-inflammation, and histological alterations that were mitigated by Se via its antioxidant potential, anti-inflammatory property, and modulating capability of serotonergic and cholinergic functions.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Farheen Hafeez
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
43
|
Ubiquitinated gasdermin D mediates arsenic-induced pyroptosis and hepatic insulin resistance in rat liver. Food Chem Toxicol 2021; 160:112771. [PMID: 34920032 DOI: 10.1016/j.fct.2021.112771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 02/08/2023]
Abstract
As an environmental toxicant, arsenic exposure may cause insulin resistance (IR). Previous studies have shown that pyroptosis plays an important role in the occurrence and development of IR. Although gasdermin D (GSDMD) functions as an executor of pyroptosis, the relationship between GSDMD-mediated pyroptosis and hepatic IR remains unclear. Here, we observed that sodium arsenite (NaAsO2) activated NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasomes, promoted GSDMD activation, induced pyroptosis and hepatic IR, while GSDMD knockdown attenuated pyroptosis and hepatic IR caused by NaAsO2. However, GSDMD interference did not affect NLRP3 activation. Ubiquitination modification is widely involved in protein regulation and intracellular signal transduction, and whether it regulates GSDMD and affects its degradation, and exerts effects on arsenic-induced pyroptosis remain unclear. We observed that NaAsO2 reduced the K48- and K63-linked ubiquitination of GSDMD, thereby inhibiting its degradation through the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway (ALP), causing GSDMD to accumulate and lyse into GSDMD-N, which promoted pyroptosis. In summary, we demonstrated that GSDMD participated in arsenic-induced hepatic IR. Moreover, NaAsO2 reduced GSDMD ubiquitination and decreased its intracellular degradation, aggravating pyroptosis and hepatic IR. We have revealed the molecular mechanism underpinning arsenic-induced IR, and we provide potential solutions for the prevention and treatment of type 2 diabetes (T2D).
Collapse
|
44
|
Hu D, Gao J, Yang X, Liang Y. Chinese Pharmacopoeia Revisited: A Review of Anti-Depression Herbal Sources. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211059312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Depression, which can be accompanied by many fatal diseases and a low life quality, has become the leading cause of ill health and disability worldwide. However, Chinese Pharmacopoeia, the most authoritative and evidence-based encyclopedia of Traditional Chinese Medicine (TCM), could contain leads and insights into the development of new antidepressant drugs. In this work, nine herbal medicines with ‘dispel melancholy functions’ specifically documented in Chinese Pharmacopoeia have been comprehensively reviewed with respect to clinical trials, and phytochemical and pharmacological aspects. The nine drugs are Rosae Chinensis Flos, Croci Stigma, Albiziae Cortex and Flos, Roase Rugosae Flos, Curcumae Radix, Hyperici Perforati Herba, Cyperi Rhizoma and Bupleuri Radix. The mechanisms of action of their functional antidepressant compounds, including gallic acid, hypericin, kaempferol, crocetin, crocin, quercetin, luteolin, isorhamnetin, curcumin, hyperforin, adhyperforin, catechin, rutin, puerarin, and saikosaponins A and D, have been collected and discussed. These traditional Chinese herbs and their active compounds provide a promising resource to develop effective new antidepressant drugs in future. Moreover, mechanistic investigations, safety verification and large-scale clinical trials are still expected to finally transform such TCM-based antidepressant resources to new drugs for patients suffering from depression.
Collapse
Affiliation(s)
- Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Xiao Yang
- School of Clinical Medicine, Henan University of Science and Technology, Henan, China
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Peking University, Beijing, China
| |
Collapse
|
45
|
Samad N, Manzoor N, Muneer Z, Bhatti SA, Imran I. Reserpine-induced altered neuro-behavioral, biochemical and histopathological assessments prevent by enhanced antioxidant defence system of thymoquinone in mice. Metab Brain Dis 2021; 36:2535-2552. [PMID: 34309746 DOI: 10.1007/s11011-021-00789-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
Thymoquinone (Tq), an active compound of Nigella sativa, has been known for its anti-inflammatory, antioxidant, and neuroprotective characteristics. The present study is aimed to evaluate the effect of Tq on reserpine (Rsp)-induced behavioral (anxiety and/or depression) and, memory deficit; hippocampal inflammatory markers, oxidative markers, antioxidant enzymes, acetylcholinesterase (AChE) activity and histopathology in male mice. Animals were injected with Rsp at a dose of 2 mg/ml/kg and doses of Tq (10 and 20 mg/ml/kg) for 28 days. After the treatment period, behavioral tests [Elevated plus maze (Epm); Light dark box test (Lda); Morris water maze (Mwm); Forced swim test (Fst); Tail suspension test (Tst)] were conducted. After analysis of behaviors, mice were decapitated and brain samples were collected, the hippocampus was removed from the whole-brain sample for biochemical analysis and histology. Administration of Tq at both doses prevent adverse effects of Rsp and increased time spent in open arm and lightbox in Lda and Epm respectively, decreased immobility period in Fst and Tst, decreased latency escape in Mwm, reduced lipid peroxidation (lpo) and inflammatory cytokines, increased defensive enzymes, reduced acetylcholinesterase (AChE) activity and corrected histological lines. It is concluded that Rsp-instigated behavioral and memory deficits were prevented by Tq possibly via its strong antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahra Muneer
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sheraz A Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
46
|
Mesquita M, Santos E, Kassuya CA, Salvador MJ. Chimarrão, terere and mate-tea in legitimate technology modes of preparation and consume: A comparative study of chemical composition, antioxidant, anti-inflammatory and anti-anxiety properties of the mostly consumed beverages of Ilex paraguariensis St. Hil. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114401. [PMID: 34245836 DOI: 10.1016/j.jep.2021.114401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ilex paraguariensis St. Hil. (Aquifoliaceae) is a medicinal plant widely used by South American populations for centuries and is popularly attributed to stimulating and detoxifying properties. Nowadays, their consume traditionally occurs through three different beverages: chimarrão, terere and mate-tea. AIM OF THE STUDY Although its composition and properties are well studied, literature lacks work comparing the potential of their extracts obtained by a legitimate preparation mode of their popular beverages. Therefore, the purpose of this research is to investigate changes in chemical composition, antioxidant activity, anti-inflammatory efficacy and anxiolytic effect from lyophilized aqueous extracts obtained simulating the legitimate popular preparation mode of chimarrão, terere and mate-tea. MATERIALS AND METHODS In this work, were investigated differences related to preparation technology and dry material used through chemical composition analysis, with the lyophilized aqueous extracts obtained simulating the chimarrão, terere and mate-tea preparation. The chemical composition analysis comprises the total soluble phenolics content, chemical profiles by HPLC-ESI-MS/MS, and quantitative component detection by HPLC-UV/DAD. Moreover, evaluations of comparative antioxidant activity of the extracts (DPPH and ORACFL assays), anti-inflammatory efficacy and anxiolytic effect were performed in vivo. RESULTS Our results showed that chimarrão extracts presented a richer composition in terms of phenolic compounds and purine alkaloids, and better antioxidant activity when compared to the other extracts. In pleurisy test, all products showed anti-inflammatory properties in the dose of 60 mg/kg. In the anxiolytic evaluation, although all extracts presented some effect, chimarrão and terere were better than mate-tea in general. No sign of toxicity was observed. CONCLUSIONS Our findings support that the beverage made as chimarrão has the best composition and the most promising properties overall.
Collapse
Affiliation(s)
- M Mesquita
- Institute of Biology, Department of Plant Biology, PPG BCE, University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil.
| | - E Santos
- College of Health Science, Federal University of Grande Dourados, Dourados, MS, Brazil.
| | - C A Kassuya
- College of Health Science, Federal University of Grande Dourados, Dourados, MS, Brazil.
| | - M J Salvador
- Institute of Biology, Department of Plant Biology, PPG BCE, University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
47
|
Zhang J, Qiu T, Jiang L, Wang N, Zhu Y, Yan R, Wang S, Bai J, Shi X, Yang G, Liu X, Yao X, Sun X. NLRP3 inflammasome blocked the glycolytic pathway via targeting to PKLR in arsenic-induced hepatic insulin resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112590. [PMID: 34364127 DOI: 10.1016/j.ecoenv.2021.112590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Arsenic exposure is related to insulin resistance (IR). However, the underlying mechanism is still uncertain. NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasome is a key driving factor of IR. We found that NaAsO2 caused hepatic IR, activated NLRP3 inflammasome, and inhibited glycolysis pathway in vivo. We also found that tricarboxylic acid cycle (TCA cycle) was inhibited, and the content of hepatic lactate was upregulated with the treatment of arsenic. Consistent with these findings, we found that NLRP3 inflammasome and glycolysis were involved in the development of IR in L-02 cells. Besides, inhibiting NLRP3 inflammasome upregulated aerobic glycolysis and inhibited anaerobic glycolysis. Moreover, we demonstrated that NLRP3 inflammasome could bind to pyruvate kinase, liver and RBC (PKLR). Simultaneously, insulin signaling rather than NLRP3 inflammasome activation was altered by overexpressing PKLR. In summary, after treatment with NaAsO2, NLRP3 inflammasome blocked the glycolytic pathway via binding to PKLR, which in turn caused hepatic IR. This study shed new light on the molecular mechanism underlying arsenic-induced IR.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| | - Ningning Wang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| | - Yuhan Zhu
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| | - Rushan Yan
- The Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian 116023, PR China.
| | - Shengyu Wang
- The First Affiliated Hospital, Dalian Medical University, 222 Zhongshan Road, Dalian 116001, PR China.
| | - Jie Bai
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| | - Xiaoxia Shi
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| | - Guang Yang
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| | - Xiaofang Liu
- Nutrition and Food Hygiene, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, 9 Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
48
|
Zhao X, Ma R, Zhang X, Wang B, Rong B, Jiang N, Feng W, Chen M, Huo Z, Li S, Xia T. Transcriptomic study of the mechanism by which the Kai Yu Zhong Yu recipe improves oocyte quality in a stressed mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114298. [PMID: 34090913 DOI: 10.1016/j.jep.2021.114298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/26/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Kai Yu Zhong Yu recipe (KYZY) is a classic herbal formula in traditional Chinese medicine (TCM) that has been used to treat infertility associated with psychological stress for more than three hundred years. AIM OF THE STUDY Psychological stress has major impacts on fertility, with variable outcomes depending on the nature, strength, and duration of the stress. Stress can directly disturb ovulation, oocyte quality, maturation, and embryo development. The aim of this study is to investigate the molecular mechanism by which KYZY improves oocyte developmental potential under psychological stress. MATERIALS AND METHODS ICR female mice aged 4-5 weeks were randomly divided into five groups: control, stressed in the chronic unpredictable stress model (CUSM), and stressed plus KYZY treatment at 38.2 g/kg (KYZYH), 19.1 g/kg (KYZYM), or 9.6 g/kg (KYZYL). Ovary function was assessed by measuring serum levels of estradiol (E2), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and anti-Müllerian hormone (AMH). Oocyte quality was evaluated in terms of reactive oxygen species (ROS) levels, apoptotic DNA fragmentation, and mitochondria distribution. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between groups and then further analyzed the DEGs for gene ontology (GO) term enrichment and protein-protein interactions. RESULTS Mice in the stressed group had reduced serum E2, LH, and FSH as well as increased ROS levels, increased apoptosis, and disturbed mitochondria distribution in oocytes. Treatment with KYZY at all three doses reversed or ameliorated these negative effects of stress. DEG analysis identified 187 common genes between the two comparisons (stressed vs. control and KYZYM vs. stressed), 33 of which were annotated with six gene ontology (GO)'s biological process (BP) terms: cell differentiation, apoptosis, ATP synthesis, protein homo-oligomerization, neuron migration, and negative regulation of peptidase activity. Protein-protein interaction network analysis of DEGs identified key hub genes. Notably, the genes Atp5o and Cyc1 were both involved in the ATP synthesis and among the top three hub genes, suggesting that regulation of oocyte mitochondrial electron transport and ATP synthesis is important in the response to stress and also is a possible mechanism of action for KYZY. CONCLUSIONS KYZY was effective in ameliorating the adverse effects of stress on oocyte competence, possibly by targeting the mitochondrial respiratory chain and ATP synthase.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Ruihong Ma
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiaoyu Zhang
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Baojuan Wang
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Beilei Rong
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Nan Jiang
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Weihua Feng
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Mingli Chen
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Zhipeng Huo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuming Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Tian Xia
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| |
Collapse
|
49
|
Taheri Zadeh Z, Esmaeilpour K, Aminzadeh A, Heidari MR, Joushi S. Resveratrol Attenuates Learning, Memory, and Social Interaction Impairments in Rats Exposed to Arsenic. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9993873. [PMID: 34621902 PMCID: PMC8492247 DOI: 10.1155/2021/9993873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/27/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
Arsenic (As) toxicity has deleterious effects on human health causing disorder in the brain. The aim of this study was to investigate the possible neuroprotective effect of resveratrol (RSV) on arsenic-induced neurotoxicity in rats. Neurotoxicity in rats was developed by treating As 10 mg/kg/day for 21 days orally. Animals were put into seven groups: control, vehicle, As, As+RSV10, As+RSV20 mg/kg, RSV10, and RSV20 mg/kg. Behavioral assessments such as the social interaction test, novel object recognition test, elevated plus maze, open field, the Morris water maze, in addition to assessment of biomarkers such as ferric reducing ability of plasma assay, glutathione assay, and malondialdehyde assay, were used to evaluate the effects of RSV on cognitive impairment and molecular changes induced by As. The results showed that cognitive performance impaired in As rats. RSV20 mg/kg significantly could ameliorate behavioral changes like spatial learning in days 3 and 4 (p < 0.05), recognition learning and memory (p < 0.01), disabilities in motor coordination and stress (p < 0.05), increased anxiety (p < 0.05), and social interaction deficit (sociability (p < 0.001) and social memory (p < 0.05)). RSV20 mg/kg also attenuated molecular modifications like decreased antioxidant power (p < 0.001), reduced glutathione content (p < 0.05), and increased malondialdehyde level (p < 0.05) induced by As. In addition to oxidative stress assessments, RSV10 mg/kg could significantly increase FRAP (p < 0.01) and GSH (p < 0.05); however, MDA was not significantly increased. Our current behavioral findings suggest that RSV has neuroprotective effects against AS toxicity.
Collapse
Affiliation(s)
- Zahra Taheri Zadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Azadeh Aminzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmoud Reza Heidari
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
50
|
İnanç ME, Güngör Ş, Gül E, Uslu BA, Ata A. Gallic acid improves the viability and mitochondrial membrane potential of post-thawed goat buck semen. Acta Vet Hung 2021; 69:291-297. [PMID: 34570722 DOI: 10.1556/004.2021.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to determine the effects of gallic acid (GA) on frozen-thawed goat spermatozoa. Four Honamli goat bucks were used at their breeding season, and ejaculates were collected by an electroejaculator. Mixed semen was divided into the following four groups: control (0 mM), low (L; 1 mM), medium (M; 2 mM), and high (H; 4 mM) concentration of GA. All the groups were frozen and thawed in a water bath for spermatological evaluation. The lowest motility was observed in the control group (47.60 ± 5.70%) (P < 0.05), while the highest viability (62.45 ± 1.68%), plasma membrane and acrosome integrity (44.81 ± 4.57%), and high mitochondrial membrane potential (35.96 ± 2.50%) were observed in the low GA group (P < 0.05). Also, the lowest hypo-osmotic swelling test (HOS +) value was found in the high GA group (47.60 ± 4.82%) (P < 0.05). In conclusion, supplementing a low concentration (1 mM) of GA to the Tris-based semen extender had a positive effect on spermatological parameters after freeze-thawing of Honamli goat semen. Further studies should be continued in other species with different doses and combinations using commercial and/or homemade semen extenders.
Collapse
Affiliation(s)
- Muhammed Enes İnanç
- 1 Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Antalya Burdur Yolu, 15030 Yakaköy, Burdur, Turkey
| | - Şükrü Güngör
- 1 Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Antalya Burdur Yolu, 15030 Yakaköy, Burdur, Turkey
| | - Emir Gül
- 2 Veterinarian in Gaziantep, Turkey
| | - Barış Atalay Uslu
- 1 Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Antalya Burdur Yolu, 15030 Yakaköy, Burdur, Turkey
| | - Ayhan Ata
- 1 Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Antalya Burdur Yolu, 15030 Yakaköy, Burdur, Turkey
| |
Collapse
|