1
|
Weng X, Ho CT, Lu M. Biological fate, functional properties, and design strategies for oral delivery systems for cinnamaldehyde. Food Funct 2024; 15:6217-6231. [PMID: 38767618 DOI: 10.1039/d4fo00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cinnamaldehyde (CA) is the main bioactive component extracted from the internal bark of cinnamon trees with many health benefits. In this paper, the bioavailability and biological activities of cinnamaldehyde, and the underlying molecular mechanism are reviewed and discussed, including antioxidant, cardioprotective, anti-inflammatory, anti-obesity, anticancer, and antibacterial properties. Common delivery systems that could improve the stability and bioavailability of CA are also summarized and evaluated, such as micelles, microcapsules, liposomes, nanoparticles, and nanoemulsions. This work provides a comprehensive understanding of the beneficial functions and delivery strategies of CA, which is useful for the future application of CA in the functional food industry.
Collapse
Affiliation(s)
- Xiaolan Weng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Bektaşoğlu PK, Somay A, Hazneci J, Borekci A, Gürer B. Cinnamaldehyde has Antifibrotic Effects on Rats with Epidural Fibrosis. World Neurosurg 2024; 183:e395-e400. [PMID: 38143035 DOI: 10.1016/j.wneu.2023.12.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Laminectomy is a widely employed surgical procedure for the treatment of spinal stenosis, but it may lead to epidural fibrosis (EF) and failed back surgery syndrome. Cinnamaldehyde, a phenylpropanoid found in cinnamon, has demonstrated antioxidant and anti-inflammatory properties. In the present study, we hypothesized that topical application and systemic administration of cinnamaldehyde could be helpful in the prevention of EF in a rat laminectomy model. METHODS The rats were randomly assigned to control, local, and systemic Tween-80 and local and systemic cinnamaldehyde experimental groups (n = 6, per group). In the control group, just laminectomy was performed. In local treatment groups, applications were done just after the laminectomy onto dura. In systemic treatment groups, intraperitoneal administrations were performed following skin suturing. The degree of epidural fibrosis was evaluated macroscopically and histopathologically 4 weeks later. RESULTS Macroscopic assessment revealed decreased EF with both topical and systemic cinnamaldehyde application, whereas microscopic examination results were not significant. CONCLUSIONS Our findings provide the first experimental evidence of cinnamaldehyde's potential protective effects against EF.
Collapse
Affiliation(s)
- Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey.
| | - Adnan Somay
- Department of Pathology, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Jülide Hazneci
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Ali Borekci
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Bora Gürer
- Department of Neurosurgery, Istinye University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Kuru Bektaşoğlu P, Arıkök AT, Ergüder Bİ, Sargon MF, Altun SA, Ünlüler C, Börekci A, Kertmen H, Çelikoğlu E, Gürer B. Cinnamaldehyde has ameliorative effects on rabbit spinal cord ischemia and reperfusion injury. World Neurosurg X 2024; 21:100254. [PMID: 38148767 PMCID: PMC10750183 DOI: 10.1016/j.wnsx.2023.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Ata Türker Arıkök
- Department of Pathology, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University School of Medicine, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Lokman Hekim University School of Medicine, Ankara, Turkey
| | - Seda Akyıldız Altun
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Caner Ünlüler
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Ali Börekci
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Erhan Çelikoğlu
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| |
Collapse
|
4
|
Novel Cinnamaldehyde Derivatives Inhibit Peripheral Nerve Degeneration by Targeting Schwann Cells. Antioxidants (Basel) 2022; 11:antiox11101846. [PMID: 36290569 PMCID: PMC9598575 DOI: 10.3390/antiox11101846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Peripheral nerve degeneration (PND) is a preparative process for peripheral nerve regeneration and is regulated by Schwann cells, a unique glial cell in the peripheral nervous system. Dysregulated PND induces irreversible peripheral neurodegenerative diseases (e.g., diabetic peripheral neuropathy). To develop novel synthetic drugs for these diseases, we synthesized a set of new cinnamaldehyde (CAH) derivatives and evaluated their activities in vitro, ex vivo, and in vivo. The 12 CAH derivatives had phenyl or naphthyl groups with different substitution patterns on either side of the α,β-unsaturated ketone. Among them, 3f, which had a naphthaldehyde group, was the most potent at inhibiting PND in vitro, ex vivo, and in vivo. To assess their interactions with transient receptor potential cation channel subfamily A member 1 (TRPA1) as a target of CAH, molecular docking studies were performed. Hydrophobic interactions had the highest binding affinity. To evaluate the underlying pharmacological mechanism, we performed bioinformatics analysis of the effect of 3f on PND based on coding genes and miRNAs regulated by CAH, suggesting that 3f affects oxidative stress in Schwann cells. The results show 3f to be a potential lead compound for the development of novel synthetic drugs for the treatment of peripheral neurodegenerative diseases.
Collapse
|
5
|
Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022. [PMID: 35215469 DOI: 10.3390/nu14040819.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
|
6
|
Caruso G, Godos J, Privitera A, Lanza G, Castellano S, Chillemi A, Bruni O, Ferri R, Caraci F, Grosso G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022; 14:nu14040819. [PMID: 35215469 PMCID: PMC8875888 DOI: 10.3390/nu14040819] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Alessio Chillemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, 00185 Rome, Italy;
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
- Correspondence:
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| |
Collapse
|
7
|
Kuru Bektaşoğlu P, Koyuncuoğlu T, Demir D, Sucu G, Akakın D, Peker Eyüboğlu İ, Yüksel M, Çelikoğlu E, Yeğen BÇ, Gürer B. Neuroprotective Effect of Cinnamaldehyde on Secondary Brain Injury After Traumatic Brain Injury in a Rat Model. World Neurosurg 2021; 153:e392-e402. [PMID: 34224887 DOI: 10.1016/j.wneu.2021.06.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the possible neuroprotective effects of cinnamaldehyde (CA) on secondary brain injury after traumatic brain injury (TBI) in a rat model. METHODS Rats were randomly divided into 4 groups: control (n = 9), TBI (n = 9), vehicle (0.1% Tween 80; n = 8), and CA (100 mg/kg) (n = 9). TBI was induced by the weight-drop model. In brain tissues, myeloperoxidase activity and the levels of luminol-enhanced and lucigenin-enhanced chemiluminescence were measured. Interleukin 1β, interleukin 6, tumor necrosis factor α, tumor growth factor β, caspase-3, and cleaved caspase-3 were evaluated with an enzyme-linked immunosorbent assay method. Brain injury was histopathologically graded after hematoxylin-eosin staining. Y-maze and novel object recognition tests were performed before TBI and within 24 hours of TBI. RESULTS Higher myeloperoxidase activity levels in the TBI group (P < 0.001) were suppressed in the CA group (P < 0.05). Luminol-enhanced and lucigenin-enhanced chemiluminescence, which were increased in the TBI group (P < 0.001, for both), were decreased in the group that received CA treatment (P < 0.001 for both). Compared with the increased histologic damage scores in the cerebral cortex and dentate gyrus of the TBI group (P < 0.001), scores of the CA group were lower (P < 0.001). Decreased number of entries and spontaneous alternation percentage in the Y-maze test of the TBI group (P < 0.05 and P < 0.01, respectively) were not evident in the CA group. CONCLUSIONS CA has shown neuroprotective effects by limiting neutrophil recruitment, suppressing reactive oxygen species and reducing histologic damage and acute hippocampal dysfunction.
Collapse
Affiliation(s)
- Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey; Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.
| | - Türkan Koyuncuoğlu
- Department of Physiology, Biruni University Faculty of Medicine, Istanbul, Turkey
| | - Dilan Demir
- Department of Neurosurgery, University of Health Sciences, Kartal Dr. Lutfi Kırdar Education and Research Hospital, Istanbul, Turkey
| | - Gizem Sucu
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - İrem Peker Eyüboğlu
- Department of Medical Biology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health-Related Services, Istanbul, Turkey
| | - Erhan Çelikoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Bora Gürer
- Department of Neurosurgery, Istinye University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
Li M, Li C, Zhou Y, Tian H, Deng Q, Liu H, Zhu L, Yin X. Optimization of cinnamaldehyde microcapsule wall materials by experimental and quantitative methods. J Appl Polym Sci 2021. [DOI: 10.1002/app.49667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - You Zhou
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Hua Tian
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Qiaoyuan Deng
- School of Materials Science and Engineering Hainan University Haikou PR China
| | - Haifang Liu
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou PR China
| | - Li Zhu
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| |
Collapse
|
9
|
Wang J, Wu X. Traditional Chinese Medicine Jiuwei Zhenxin Granules in Treating Depression: An Overview. Neuropsychiatr Dis Treat 2020; 16:2237-2255. [PMID: 33116523 PMCID: PMC7541918 DOI: 10.2147/ndt.s273324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is known as "Yu Zheng" in traditional Chinese medicine (TCM). Jiuwei Zhenxin granules (JZG) is a type of TCM. According to TCM theory, it nourishes the heart and spleen, tonifies Qi, and tranquilizes the spirit, and may also has effects in the treatment of depression. Here, we systematically reviewed recent basic and clinical experimental studies of JZG and depression, including studies of the pharmacological mechanisms, active ingredients, and clinical applications of JZG in depression treatment. This review will deepen our understanding of the pharmacological mechanisms, drug interactions, and clinical applications of TCM prescriptions and provide a basis for the development of new drugs in the treatment of depression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xingmao Wu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
10
|
Zareie A, Sahebkar A, Khorvash F, Bagherniya M, Hasanzadeh A, Askari G. Effect of cinnamon on migraine attacks and inflammatory markers: A randomized double-blind placebo-controlled trial. Phytother Res 2020; 34:2945-2952. [PMID: 32638445 DOI: 10.1002/ptr.6721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023]
Abstract
Migraine is the most common type of primary headaches. Increased levels of interleukin-6 (IL-6), calcitonin-gene-related peptide (CGRP) and nitric oxide (NO) lead to inflammation and neurogenic pain. Cinnamon has anti-inflammatory and neuroprotective properties. Thus, the aim of this study was to assess the effect of cinnamon on migraine attacks and inflammatory status. Fifty patients with migraine were randomized to receive either cinnamon powder (three capsules/day each containing 600 mg of cinnamon) or three placebo capsules/day each containing 100 mg of corn starch (control group) for 2 months. Serum levels of IL-6, CGRP and NO were measured at baseline and at the end of the study. The frequency, severity and duration of pain attacks were also recorded using questionnaire. Serum concentrations of IL-6 and NO were significantly reduced in the cinnamon group compared with the control group (p < .05). However, serum levels of CGRP remained unchanged in both groups. The frequency, severity and duration of migraine attacks were significantly decreased in the cinnamon group compared with the control group. Cinnamon supplementation reduced inflammation as well as frequency, severity and duration of headache in patients with migraine. Cinnamon could be regarded as a safe supplement to relieve pain and other complications of migraine.
Collapse
Affiliation(s)
- Azadeh Zareie
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Khorvash
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Hasanzadeh
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Fesli R, Kuru Bektaşoğlu P, Gürer B, Arıkök AT, Öztürk ÖÇ, Bozkurt H, Kertmen H. Amelioration of Cerebral Vasospasm and Secondary Injury by Vigabatrin After Experimental Subarachnoid Hemorrhage in the Rabbit. World Neurosurg 2020; 141:e559-e565. [PMID: 32492538 DOI: 10.1016/j.wneu.2020.05.230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Vigabatrin, an antiepileptic drug, increases the level of gamma aminobutyric acid in the brain by inhibiting its catabolism. Because gamma aminobutyric acid has been proved to have vasodilatory effects, in the present study, we investigated the effect of vigabatrin to treat experimental subarachnoid hemorrhage (SAH)-induced vasospasm. METHODS A total of 30 New Zealand white rabbits were divided into 3 groups of 10 each: the control group, SAH group, and vigabatrin group. Experimental SAH was established by injection of autologous arterial blood into the cisterna magna. In the vigabatrin group, the rabbits were administered vigabatrin for 3 days after induction of the SAH. The first dose of vigabatrin was given 2 hours after SAH induction. A daily dose of 500 mg/kg vigabatrin was administered intraperitoneally. After 3 days, the rabbits were sacrificed, and the brains were removed, together with the cerebellum and brainstem. The basilar artery wall thickness and lumen areas were measured. The neuronal degeneration in the hippocampus (CA1, CA3, and dentate gyrus) was also evaluated. RESULTS The arterial wall thickness of the vigabatrin group was less than that in the SAH group (P < 0.001), and the mean luminal area of the vigabatrin group was greater than that in the SAH group (P < 0.001). Additionally, the hippocampal neuronal degeneration score of the vigabatrin group was lower than that of the SAH group (P < 0.001). CONCLUSION These findings have indicated that vigabatrin has a vasodilatory effect in an experimental SAH model in the rabbit. Moreover, it showed a neuroprotective effect in the hippocampal neurons against secondary injury induced by SAH.
Collapse
Affiliation(s)
- Ramazan Fesli
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey; Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Bora Gürer
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey.
| | - Ata Türker Arıkök
- Department of Pathology, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Özden Çağlar Öztürk
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Hüseyin Bozkurt
- Department of Neurosurgery, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| |
Collapse
|