1
|
Abd Elrazik NA, Abd El Salam ASG. Diacerein ameliorates thioacetamide-induced hepatic encephalopathy in rats via modulation of TLR4/AQP4/MMP-9 axis. Metab Brain Dis 2024; 40:10. [PMID: 39556255 PMCID: PMC11573817 DOI: 10.1007/s11011-024-01457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/27/2024] [Indexed: 11/19/2024]
Abstract
Astrocyte swelling, blood brain barrier (BBB) dissipation and the subsequent brain edema are serious consequences of persistent hyperammonemia in hepatic encephalopathy (HE) in which if inadequately controlled it will lead to brain death. The current study highlights the potential neuroprotective effect of diacerein against thioacetamide (TAA)-induced HE in acute liver failure rat model. HE was induced in male Sprague-Dawley rats via I.P. injection of TAA (200 mg/kg) for three alternative times/week at 3rd week of the experiment. Diacerein (50 mg/kg) was gavaged for 14 days prior to induction of HE and for further 7 days together with TAA injection for an overall period of 21 days. Diacerein attenuated TAA-induced HE in acute liver failure rat model; as proofed by significant lowering of serum and brain ammonia concentrations, serum AST and ALT activities and significant attenuation of both brain and hepatic MDA contents and IL-1β with marked increases in GSH contents (P < 0.0001). The neuroprotective effect of diacerein was demonstrated by marked improvement of motor and cognitive deficits, brain histopathological changes; hallmarks of HE. As shown by immunohistochemical results, diacerein markedly downregulated brain TLR4 expression which in turn significantly increased the GFAP expression, and significantly decreased AQP4 expression; the astrocytes swelling biomarkers (P < 0.0001). Moreover, diacerein preserved BBB integrity via downregulation of MMP-9 mediated digestion of tight junction proteins such as occludin (P < 0.0001). Collectively, diacerein ameliorated cerebral edema and maintained BBB integrity via modulation of TLR4/AQP4/MMP-9 axis thus may decrease the progression of HE induced in acute liver failure.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
2
|
Moradi Vastegani S, Khoshnam SE, Ghafouri S, Bakhtiari N, Farbood Y, Sarkaki A. Anethole attenuates motor dysfunctions, striatal neuronal activity deficiency and blood brain barrier permeability by decreasing striatal α-synuclein and oxidative stress in rotenone-induced Parkinson's disease of male rats. PLoS One 2023; 18:e0294612. [PMID: 37972114 PMCID: PMC10653401 DOI: 10.1371/journal.pone.0294612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Anethole is the main compound of the essential oil of anise and several other plants, which has antioxidant, anti-inflammatory, and neuroprotective properties. Oxidative stress is considered as an important factor in the pathogenesis of PD. In the present study, we aimed to investigate the effects of anethole against rotenone-induced PD. METHODS Male Wistar rats were randomly divided into six groups. Control group received DMSO + sunflower oil, model group received rotenone (2 mg/kg, s.c, daily for 35 days), positive control group received L-Dopa, and test groups received anethole (62.5, 125, and 250 mg/kg, i.g, daily for 35 days) 1 hour before each rotenone injection. Body weight changes, rotarod test, stride length test, and extracellular single unit recording were performed after treatment. After behavioral test, Brain water content and blood brain barrier (BBB) permeability were evaluated, and the levels of malondialdehyde (MDA), superoxide dismutases (SOD), alpha-synuclein and MAO-B were measured in the striatum. RESULTS Chronic administration of rotenone induced body weight loss and caused significant dysfunction in locomotor activity, neuronl firing rate, and BBB. Rotenone also decreased SOD activity, increased MDA level, and elevated the expression of alpha-synuclein and MAO-B in the striatum. However, treatment with anethole attenuated body weight loss, motor function, neuronal activity, and BBB function. Furthermore, Anethole treatment attenuated oxidative stress and decreased the expression of alpha-synuclein and MAO-B compared to the rotenone group. CONCLUSION Our results show that through its antioxidant properties, aethole can improve the cellular, molecular and behavioral characteristics of rotenone-induced Parkinson's disease.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
ÖZSOY Ş, ÇAKIR Z, AKÇAY E, GEVREK F. Effects of thymoquinone and memantine alone and in combination on memory and hippocampal morphology in rats with streptozotocin-induced Alzheimer's disease. Turk J Med Sci 2023; 53:894-901. [PMID: 38031940 PMCID: PMC10760553 DOI: 10.55730/1300-0144.5653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/18/2023] [Accepted: 05/25/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease. Thymoquinone (TQ) has broad biological functions, including antiinflammatory, antioxidant, neuroprotective properties. Memantine (MEM) is indicated for the symptomatic treatment of moderate to severe AD. We aimed to evaluate the effect of TQ alone or in combination with MEM on memory and hippocampal morphology in an STZ-induced rat AD model. METHODS Thirty male rats were included in this study. The AD model was created by giving ICV STZ. The rats were divided into 5 groups (n = 6 each). Group 1 (control group): The rats received only ICV-STZ 3 mg/kg for 2 weeks. Group 2 (sham group): In addition to ICV STZ, 9% NaCl, 1 mL/day i.p. for 2 weeks of injection, was applied. Group 3 (TQ group): In addition to ICV STZ, rats received TQ 10 mg/kg i.p. for 2 weeks. Group 4 (MEM group): In addition to ICV STZ, rats were given MEM at a dose of 5 mg/kg for two weeks. Group 5 (TQ+MEM group): In addition to ICV STZ, this group was given TQ (10 mg/kg/day, i.p.) and MEM (5 mg/kg/day, i.p.) for 2 weeks. On the 15th day, passive avoidance learning (PAL) was applied to all groups. Then, rats were sacrificed, neurons in the hippocampal CA1, CA2, CA3 regions were evaluated. RESULTS Groups 3, 4, 5 had longer latency periods than groups 1 and 2. The neuron density in the CA1, CA2, CA3 regions had decreased in groups 1 and 2 compared to groups 3, 4, 5. There were significantly more neurons in groups 3, 4, 5 than in groups 1 and 2. DISCUSSION We found that TQ alone and in combination with MEM showed ameliorative effects on memory and hippocampal morphology. TQ may offer a promising treatment strategy for AD.
Collapse
Affiliation(s)
- Şeyma ÖZSOY
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpaşa University, Tokat,
Turkiye
| | - Ziya ÇAKIR
- Department of Oral and Dental Health, Faculty of Health Services Vocational School, Tokat Gaziosmanpaşa University, Tokat,
Turkiye
| | - Elif AKÇAY
- Department of Pathology, Faculty of Medicine, Tokat Gaziosmanpaşa University, Tokat,
Turkiye
| | - Fikret GEVREK
- Department of Histology, Faculty of Medicine, Tokat Gaziosmanpaşa University, Tokat,
Turkiye
| |
Collapse
|
4
|
Mohamed EK, Hafez DM. Gallic acid and metformin co-administration reduce oxidative stress, apoptosis and inflammation via Fas/caspase-3 and NF-κB signaling pathways in thioacetamide-induced acute hepatic encephalopathy in rats. BMC Complement Med Ther 2023; 23:265. [PMID: 37491245 PMCID: PMC10367384 DOI: 10.1186/s12906-023-04067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) is a consequence of chronic or acute liver diseases. This study evaluates the combined effect of gallic acid (GA), and metformin (Met) on the liver and brain damage associated with HE. METHODS Acute HE was induced by a single dose of thioacetamide (TAA) (300 mg/kg) as an I.P. injection. Treated groups received GA group (100 mg/kg/day, p.o), Met (200 mg/kg/day, p.o), or their combination for 25 consecutive days before TAA injection. RESULTS The administration of TAA induced various biochemical and histopathological alterations. In contrast, treatment with GA either alone or combined with Met resulted in improved liver functions by the significant reduction in serum ALT, AST, and ALP activities, and ammonia levels. Inflammatory mediators; TNF-α, IL-6, and NFkβ levels were decreased by these treatments as well as apoptotic cascade via down-regulation of FAS and caspase-3 (CASP-3) expression in hepatic tissues. Furthermore, GA and Met either alone or combined protected the liver and brain tissues from damage by increased glutathione concentration while decreasing malondialdehyde. In addition, it was accompanied by the improvement of the brain neurotransmitter profile via the restoration of norepinephrine, dopamine, and serotonin levels. Based on our data, this is the first study to report a novel combined hepatoprotective and cognitive enhancing effect of GA and Met against TAA-induced acute liver and brain injury. CONCLUSION GA and Met combination resulted in a prominent improvement in HE complications, relative to monotherapy. Both agents potentiated the antioxidant, anti-inflammatory, and anti-apoptotic effects of each other.
Collapse
Affiliation(s)
- Ehsan Khedre Mohamed
- Biochemistry department, Egyptian DRUG AUTHORITY (EDA), formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt.
| | - Dawlat Mohamed Hafez
- Histology department, Egyptian DRUG AUTHORITY (EDA), formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
5
|
Sedik AA, Hassan A, Saleh DO. Neuromodulatory role of L-arginine: nitric oxide precursor against thioacetamide-induced-hepatic encephalopathy in rats via downregulation of NF-κB-mediated apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84791-84804. [PMID: 37378730 PMCID: PMC10359237 DOI: 10.1007/s11356-023-28184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
The aim of the present study was to investigate the impact of arginine (ARG), a nitric oxide (NO) precursor, on thioacetamide (TAA)-induced hepatic encephalopathy (HE) in rats by injection of TAA (100 mg/kg, i.p) three times per week for six consecutive weeks. TAA-injected rats were administered ARG (100 mg/kg; p.o.) concurrently with TAA for the six consecutive weeks. Blood samples were withdrawn, and rats were sacrificed; liver and brain tissues were isolated. Results of the present study demonstrated that ARG administration to TAA-injected rats revealed a restoration in the serum and brain ammonia levels as well as serum aspartate transaminase, alanine transaminase, and alkaline phosphatase and total bilirubin levels as well as behavioral alterations evidenced by restoration in locomotor activity, motor skill performance, and memory impairment. ARG showed also improvement in the hepatic and neuro-biochemical values, pro-inflammatory cytokines, and oxidative stress biomarkers. All these results were confirmed by histopathological evaluation as well as ultrastructural imaging of the cerebellum using a transmission electron microscope. Furthermore, treatment with ARG could ameliorate the immunological reactivity of nuclear factor erythroid-2-related factor 2 (Nrf2) and cleaved caspase-3 proteins in the cerebellum and hepatic tissues. From all the previous results, it can be fulfilled that ARG showed a beneficial role in modulating the adverse complications associated with TAA-induced HE in rats via reducing hyperammonemia and downregulating nuclear factor kappa B (NF-κB)-mediated apoptosis.
Collapse
Affiliation(s)
- Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Cairo, Egypt.
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dalia O Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Cairo, Egypt
| |
Collapse
|
6
|
Sahin B, Karabulut S, Filiz AK, Özkaraca M, Gezer A, Akpulat HA, Ataseven H. Galium aparine L. protects against acetaminophen-induced hepatotoxicity in rats. Chem Biol Interact 2022; 366:110119. [PMID: 36029804 DOI: 10.1016/j.cbi.2022.110119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
The toxicity of acetaminophen (N-acetyl-para-aminophenol (APAP)) is the most frequent cause of drug-induced liver damage. Galium aparine L. (GA) is traditionally used to treat jaundice. We aimed to investigate the hepatoprotective potential of GA in the APAP-induced hepatic encephalopathy (HE) rat model. Qualitative phytochemical characterization of GA was performed by LC/Q-TOF/MS analysis. Wistar rats were pretreated with GA (250 and 500 mg/kg b.wt. per oral) for five days. On the 6th day, the rats were exposed to APAP (1500 mg/kg b.wt. oral gavage) and behavioral tests (open field and passive avoidance tests) were applied on the 7th and 8th days. The animals were killed, and biochemical and histopathological parameters were assessed in blood and hepatic specimens. GA pretreated rats exhibited a significant reduction in APAP-induced liver damage, evidenced by the reduction in liver necrosis and alanine aminotransferase (ALT), aspartate aminotransferase (AST), and bilirubin (BIL). GA demonstrated an anxiolytic effect, as seen in the acquisition trial and grooming behavior. The short-term memory performances of animals were not changed in all groups, suggesting that APAP intoxication did not affect hippocampal function. These results show that GA extract markedly exerts hepatoprotective activity, while its effect on hepatic encephalopathy was limited.
Collapse
Affiliation(s)
- Bilal Sahin
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sebahattin Karabulut
- Department of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Ahmet Kemal Filiz
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Özkaraca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Arzu Gezer
- Department of Health Care Services, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | | | - Hilmi Ataseven
- Department of Internal Medicine, Discipline of Gastroenterology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
7
|
Okkay U, Ferah Okkay I, Cicek B, Aydin IC, Ozkaraca M. Hepatoprotective and neuroprotective effect of taxifolin on hepatic encephalopathy in rats. Metab Brain Dis 2022; 37:1541-1556. [PMID: 35298730 DOI: 10.1007/s11011-022-00952-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
This study was planned to assess the potential protective effects of taxifolin against thioacetamide-induced hepatic encephalopathy and subsequently to portray its behavioural results. The experimental model was induced with three doses of (200 mg/kg i.p.) thioacetamide and taxifolin (50 and 100 mg/kg, p.o.) was administered for fourteen days. Taxifolin effectively attenuated hepatic encephalopathy through decrease in AST, ALT, ALP and LDH concentrations and improvement of hyperammonemia, and increase in antioxidant capacity by decreasing MDA, ROS, and increasing CAT and GSH. In addition, the expressions of NF-κB, TNF-α, IL-1β, caspase-3 and Bax was down-regulated while IL-10 and Bcl-2 expressions were up-regulated with taxifolin treatment. The recovery was confirmed by downregulation of iNOS and 8-OHdG expressions in our immunohistochemical analysis. Taxifolin treatment reduced the disrupting role of thioacetamide as seen by corrected hyperammonemia as well as preservation of astrocyte and hepatocyte structure. Elevated plus maze and locomotor activity tests also proved that taxifolin might repeal the neurobehavioral disabilities. In conclusion, taxifolin has shown hepatoprotective and neuroprotective roles with antioxidant and anti-inflammatory effects, as well as suppressing the excessive release of ammonia, and it eventually reversed neurobehavioral impairments.
Collapse
Affiliation(s)
- Ufuk Okkay
- Medical Pharmacology Department, Faculty of Medicine, Ataturk University, 25100, Erzurum, Turkey.
| | - Irmak Ferah Okkay
- Pharmacology Department, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Betul Cicek
- Physiology Department, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ismail Cagri Aydin
- Pharmacology Department, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Mustafa Ozkaraca
- Pathology Department, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
8
|
Liu N, Zhou S, Olatunji OJ, Wu Y. Nucleosides rich extract from Cordyceps cicadae alleviated cisplatin-induced neurotoxicity in rats: A behavioral, biochemical and histopathological study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Role of SIRT1 in Hepatic Encephalopathy: In Vivo and In Vitro Studies Focusing on the NLRP3 Inflammasome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5522708. [PMID: 34676022 PMCID: PMC8526203 DOI: 10.1155/2021/5522708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric disorder resulting from acute or chronic liver failure. This study is aimed at investigating the therapeutic effects and mechanisms of SIRT1 in thioacetamide- (TAA-) induced rat HE models. A selective activator (CAY10602) and inhibitor (EX527) of SIRT1 were used in this study. All male rats were separated into control, TAA, CAY10602+TAA, and EX527+TAA groups. Histological damage, liver function, serum ammonia, behavioral changes, and brain oxidative stress were measured in each group. Western blotting was used to measure SIRT1, NLRP3, ASC, and IL-1β protein expression. The results showed that CAY10602 alleviated liver injury, improved neurological decline, reduced microglial activation and brain oxidative stress, and improved the survival rates of HE rats. Moreover, CAY10602 inhibited activation of the NLRP3 inflammasome in microglia of the brain cortex in HE rats. Next, cell experiments confirmed that CAY10602 inhibited activation of the NLRP3 inflammasome in BV2 microglial cells. However, inhibition of SIRT1 by EX527 or lentivirus could enhance activation of the NLRP3 inflammasome in this process. Finally, CAY10602 reduced the neurotoxicity induced by high levels of ammonia in HT22 cells. Taken together, CAY10602 alleviates TAA-induced HE by suppressing microglial activation and the NLRP3 inflammasome and reducing the neurotoxicity of NH4Cl in HT22 cells. A pharmacologic activator of SIRT1 may be a promising approach for the treatment of HE.
Collapse
|
10
|
Amin N, Du X, Chen S, Ren Q, Hussien AB, Botchway BOA, Hu Z, Fang M. Therapeutic impact of thymoquninone to alleviate ischemic brain injury via Nrf2/HO-1 pathway. Expert Opin Ther Targets 2021; 25:597-612. [PMID: 34236288 DOI: 10.1080/14728222.2021.1952986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Reactive oxygen species (ROS)-mediated inflammation plays a crucial role in ischemic brain injury. Therefore, the activation of the nuclear erythroid 2 related protein and heme-oxygenase-1 (Nrf2/HO-1) pathway by thymoquinone (TQ) could ameliorate ischemic brain damage.Areas covered: The photo-thrombotic method was employed to assess the impact of TQ in attenuating ischemic brain damage in C57BL/6 J mice and thy1-YFP-16 transgenic mice. In vitro study of TQ efficiency to attenuate the oxygen-glucose deprivation/reoxygenation (OGD/R) induced cell death by fluorescence-activated cell sorting (FACs) analysis was also analyzed. The protein expression levels of Nrf2/HO-1, inflammatory, and apoptotic were evaluated by immunofluorescence and western blot techniques. Besides, mRNA expression level of inducible nitric oxide synthase (iNOS), proto-oncogene (c-MYC), proto-oncogene (c-FOS), 5-hydroxytryptamine receptors (5-HT), and autophagy-related 5 (Atg5) were evaluated by RT-qPCR. The dendritic spine density of YFP slices was determined by confocal microscope.Results: Our in vivo and in vitro results indicated that TQ significantly mitigates brain damage and motor dysfunction after ischemic stroke. These observations coincided with curtailed cell death, inflammation, oxidative stress, apoptosis, and autophagy. Most importantly, Nrf2/HO-1 signaling pathway activation by TQ was vital in the modulation of the above processes. Lastly, we found TQ to have minimal toxicity in liver tissue.Conclusion: Our study gives credence to TQ as a promising intervention therapy for cerebral ischemia that decreases inflammation, oxidative stress, and neuronal cell death via the Nrf2/HO-1 pathway, along with modulation of apoptotic and autophagic processes.
Collapse
Affiliation(s)
- Nashwa Amin
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxue Du
- Translational Medicine Center, Affiliated Hangzhou First People's Hospital, Zhejiang, China
| | - Shijia Chen
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiannan Ren
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Azhar B Hussien
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China
| | - Marong Fang
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Sepehrinezhad A, Shahbazi A, Sahab Negah S, Joghataei MT, Larsen FS. Drug-induced-acute liver failure: A critical appraisal of the thioacetamide model for the study of hepatic encephalopathy. Toxicol Rep 2021; 8:962-970. [PMID: 34026559 PMCID: PMC8122178 DOI: 10.1016/j.toxrep.2021.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) following acute and chronic liver failure is defined as a complex of neuropsychiatric abnormalities, such as discrete personal changes, sleep disorder, forgetfulness, confusion, and decreasing the level of consciousness to coma. The use and design of suitable animal models that represent clinical features and pathological changes of HE are valuable to map the molecular mechanisms that result in HE. Among different types of animal models, thioacetamide (TAA) has been used extensively for the induction of acute liver injury and HE. This agent is not directly hepatotoxic but its metabolites induce liver injury through the induction of oxidative stress and produce systemic inflammation similar to that seen in acute HE patients. In this short review article, we shortly review the most important pathological findings in animal models of acute HE following the administration of TAA.
Collapse
Key Words
- ALT, alanine aminotransferase
- AQP4, aquaporin 4 water channel
- AST, aspartate aminotransferase
- Acute liver failure
- Animal model
- B7, B7 molecules (CD80+CD86)
- BBB, blood-brain barrier
- CBF, cerebral blood flow
- CCL2, chemokine ligand 2
- CNS, central nervous system
- CTLA4, Cytotoxic T-lymphocyte-associated Protein 4
- CYP2E1, Cytochrome P450 family 2 subfamily E member 1
- GFAP, glial fibrillary acidic protein
- HE, hepatic encephalopathy
- Hepatic encephalopathy
- IL-6, interleukin 6
- IL-β, interleukin 1 β
- Iba1, ionized calcium-binding adaptor molecule 1
- JNK, c-Jun N-terminal kinase
- NAC, N-acetylcysteine
- NF-κB, nuclear factor κB
- OA, L-ornithine-l-aspartate
- ROS, reactive oxygen species
- TAA, thioacetamide
- TASO, thioacetamide sulfoxide
- TASO2, thioacetamide sulfdioxide
- TLR-2, toll-like receptor 2
- TLR-4, toll-like receptor 4
- TNFα, tumor necrosis factor α
- Thioacetamide
- Toxicity pathway
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fin Stolze Larsen
- Department of Hepatology CA-3163, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|