1
|
Rustamzadeh A, Sadigh N, Vahabi Z, Khamseh F, Mohebi N, Ghobadi Z, Moradi F. Effects silymarin and rosuvastatin on amyloid-carriers level in dyslipidemic Alzheimer's patients: A double-blind placebo-controlled randomized clinical trial. IBRO Neurosci Rep 2024; 17:108-121. [PMID: 39139290 PMCID: PMC11321388 DOI: 10.1016/j.ibneur.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Purpose The production/excretion rate of Amyloid-β (Aβ) is the basis of the plaque burden in alzheimer's disease (AD), which depends on both central and peripheral clearance. In this study, the effect of silymarin and rosuvastatin on serum markers and clinical outcomes in dyslipidemic AD patients was investigated. Methods Participants (n=36) were randomized to silymarin (140 mg), placebo, and rosuvastatin 10 mg orally three times a day for 6 months. Serum collection and clinical outcome tests were performed at baseline and after completion of treatment. Lipid profile markers, oxidative stress markers, Aβ1-42/Aβ1-40 ratio, and Soluble Low-density lipoprotein receptor-Related Protein-1 (sLRP1)/Soluble Receptor for Advanced Glycation End Products (sRAGE) ratio were measured. Results There was a statistically significant increase in Δ-high density lipoprotein (ΔHDL) between silymarin and placebo (P<0.000) and also between rosuvastatin and placebo (p=0.044). The level of Δ-triglycerides (ΔTG) in the silymarin group has a significant decrease compared to both the placebo and the rosuvastatin group (p<0.000 and p=0.036, respectively). The Δ-superoxide dismutase (ΔSOD) level in the silymarin group compared to placebo and rosuvastatin had a significant increase (p<0.000 and p=0.008, respectively). The ΔAβ1-42/Aβ1-40 in the silymarin group compared to both the placebo and rosuvastatin groups had a significant increase (p<0.05). There was an inverse relationship between ΔTG and ΔAβ1-42/Aβ1-40 (p=-0.493 and p=0.004). ΔAβ1-42/Aβ1-40 has a direct statistical relationship with ΔSOD marker (p=0.388 and p=0.031). Also, there was a direct correlation between the level of ΔAβ1-42/Aβ1-40 and ΔsLRP1/sRAGE (p=0.491 and p=0.005). Conclusion Our study showed the relationship between plasma lipids, especially ΔTG and ΔHDL, with ΔAβ1-42/Aβ1-40 in dyslipidemic AD patients, and modulation of these lipid factors can be used to monitor the response to treatments.
Collapse
Affiliation(s)
- Auob Rustamzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nader Sadigh
- Department of Emergency Medicine, School of Medicine, Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Vahabi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khamseh
- Department of Neurology, Faculty of Medicine, Islamic Azad University, Tehran, Iran
| | - Nafiseh Mohebi
- Department of Neurology, Rasool Akram Hospital, School of Medicine, Iran University of Medial Sciences, Tehran, Iran
| | - Zahra Ghobadi
- Neuroimaging and Clinical Biomarkers Research Group, Pars Darman Medical Imaging Center, Karaj, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ye T, Zhang N, Zhang A, Sun X, Pang B, Wu X. The influence of ferroptosis on the in vitro OGD/R model in rat microglia. Neurol Res 2024:1-9. [PMID: 39011891 DOI: 10.1080/01616412.2024.2370205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/13/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE We aimed to explore the influence of ferroptosis on an oxygen-glucose deprivation/reoxygenation (OGD/R) model in primary rat microglia. METHODS Primary microglia were extracted from rats and cultured in vitro. The cells were subjected to a hypoxic environment for 6 h in a glucose-free medium, and then re-oxygenated for 24 h in DMEM/F12. Rat microglia were pretreated with the ferroptosis activator erastin and the ferroptosis inhibitor ferrostatin 1 for 24 h, followed by detection of cell cycle progression and apoptosis by flow cytometry. Intracellular total iron levels were measured. In addition, the relative levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were determined using enzyme-linked immunosorbent assay. The protein levels of 15-lox2, GPX4, SLC7A11, ACSL4, and TFR1 were examined by western blotting. RESULTS Compared with rat microglia subjected to OGD/R, pretreatment with erastin did not influence cell apoptosis but significantly enhanced total iron levels, MDA, and ROS levels, whereas it reduced SOD levels. Moreover, it upregulated ACSL4, TFR1, and 15-lox2 and downregulated GPX4 and SLC7A11. Pretreatment with ferrostatin 1 significantly inhibited cell apoptosis and cell cycle arrest in the G0/G1 phase. It significantly reduced total iron levels, MDA, and ROS levels and enhanced SOD levels, which also downregulated ACSL4, TFR1, and 15-lox2, and upregulated GPX4 and SLC7A11. CONCLUSION Our study showed that inhibition of ferroptosis is favorable against potential OGD/R-induced damage in rat microglia.
Collapse
Affiliation(s)
- Tao Ye
- Department of Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Ning Zhang
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Anbang Zhang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xiuqi Sun
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Bo Pang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xuemei Wu
- Department of Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Almarfadi OM, Siddiqui NA, Shahat AA, Fantoukh OI, El Gamal AA, Raish M, Bari A, Iqbal M, Alqahtani AS. Isolation of a novel isoprenylated phenolic compound and neuroprotective evaluation of Dodonaea viscosa extract against cerebral ischaemia-reperfusion injury in rats. Saudi Pharm J 2024; 32:101898. [PMID: 38192384 PMCID: PMC10772285 DOI: 10.1016/j.jsps.2023.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Dodonaea viscosa grows widely in Saudi Arabia, but studies evaluating its neuroprotective activity are lacking. Thus, this study aimed to isolate and identify the secondary metabolites and evaluate the neuroprotective effects of D. viscosa leaves. The isolation and identification of phytochemicals were performed using chromatographic and spectroscopic techniques. The neuroprotective potential of the extract was evaluated against focal cerebral ischaemia-reperfusion injury in rat model. Neurobehavioural deficits in the rats were evaluated, and their brains were harvested to measure infarct volume and oxidative biomarkers. Results revealed the presence of three compounds: a novel isoprenylated phenolic derivative that was elucidated as 4-hydroxy-3-(3'-methyl-2'-butenyl) phenyl 1-O-β-D-apiosyl-(1''' → 6'')- β-D-glucopyranoside (named Viscomarfadol) and two known compounds (isorhamnetin-3-O-rutinoside and epicatechin (4-8) catechin). Pre-treatment of the rats with the extract improved neurological outcomes. It significantly reduced neurological deficits and infarct volume; significantly reduced lipid peroxidation, as evidenced by decreased malondialdehyde levels; and significantly elevated antioxidant (superoxide dismutase, catalase, and glutathione) activities. These results indicate that D. viscosa is a promising source of bioactive compounds that can improve neurological status, decrease infarct volume, and enhance antioxidant activities in rats with cerebral ischaemic injury. Thus, D. viscosa could be developed into an adjuvant therapy for ischaemic stroke and other oxidative stress-related neurodegenerative disorders. Further investigations are warranted to explore other bioactive compounds in D. viscosa and evaluate their potential neuroprotective activities.
Collapse
Affiliation(s)
- Omer M. Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasir A. Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali A. El Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Dehvari-Nagan P, Abbaspour H, Asare MH, Saadatmand S. Melatonin Confers NaCl Tolerance in Withaniacoagulans L. by Maintaining Na +/K + Homeostasis, Strengthening the Antioxidant Defense System and Modulating Withanolides Synthesis-Related Genes. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY: A COMPREHENSIVE RUSSIAN JOURNAL ON MODERN PHYTOPHYSIOLOGY 2023; 70:52. [PMID: 37250622 PMCID: PMC10204015 DOI: 10.1134/s1021443723600125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/31/2023]
Abstract
As a multifunctional signaling molecule, melatonin (ML) is widely considered to induce the defense mechanism and increase the accumulation of secondary metabolites under abiotic stresses. Here, the effects of different concentrations of ML (100 and 200 µM) on the biochemical and molecular responses of Withania coagulans L. in hydroponic conditions under 200 mM NaCl treatment were evaluated. The results showed that NaCl treatment impaired photosynthetic function and reduced plant growth by decreasing photosynthetic pigments and gas exchange parameters. NaCl stress also induced oxidative stress and membrane lipid damage, disrupting Na+/K+ homeostasis and increasing hydrogen peroxide levels. NaCl toxicity decreased nitrogen (N) assimilation activity in leaves by reducing the activity of enzymes associated with N metabolism. However, adding ML to NaCl-stressed plants improved gas exchange parameters and increased photosynthesis efficiency, resulting in improved plant growth. By enhancing the activity of antioxidant enzymes and reducing hydrogen peroxide levels, ML ameliorated NaCl-induced oxidative stress. By improving N metabolism and restoring Na+/K+ homeostasis in NaCl-stressed plants, ML improved N uptake and plant adaptation to salinity. ML increased the expression of genes responsible for the biosynthesis of withanolides (FPPS, SQS, HMGR, DXS, DXR, and CYP51G1) and, as a result, increased the accumulation of withanolides A and withaferin A in leaves under NaCl stress. Overall, our results indicate the potential of ML to improve plant adaptation under NaCl stress through fundamental changes in plant metabolism. Supplementary Information The online version contains supplementary material available at 10.1134/S1021443723600125.
Collapse
Affiliation(s)
- P. Dehvari-Nagan
- Department of Biology, Faculty of Biological Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - H. Abbaspour
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M. H. Asare
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - S. Saadatmand
- Department of Biology, Faculty of Biological Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|
6
|
Wang C, Chen H, Jiang HH, Mao BB, Yu H. Total Flavonoids of Chuju Decrease Oxidative Stress and Cell Apoptosis in Ischemic Stroke Rats: Network and Experimental Analyses. Front Neurosci 2021; 15:772401. [PMID: 34955724 PMCID: PMC8695723 DOI: 10.3389/fnins.2021.772401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Pharmacological research results showed that total flavonoids of Chuju (TFCJ) could be used to treat acute myocardial ischemia and myocardial ischemia-reperfusion injury. In this study, we explored the protective effect of TFCJ on ischemic stroke (IS) in the IS rat model. We hypothesized that TFCJ might exert its neuroprotective effects by suppressing apoptosis and oxidative stress that are closely related to PI3K/Akt/mTOR signaling pathway. Method: TFCJ (10, 20, and 40 mg/kg) was administered for 7 days. Rats (260 ± 20 g) were subjected to middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 24 h. The neuroprotective effect of TFCJ was substantiated in terms of neurological deficits, oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and malondialdehyde), pathomorphological changes (HE staining and TUNEL staining), and neurobehavioral functions in the rats. Then, we employed network pharmacology to reveal the potential mechanism of TFCJ against IS. Western blot was used to determine the levels of PI3K/AKT/mTOR pathway proteins. The expression of BCL-2, BAX, and cleaved-Caspase-3 was also measured by Western blots and RT-PCR. Results: The histopathological assessment showed that TFCJ reduced MCAO-induced brain damage. Besides, TFCJ exerted a protective role in MCAO rats by alleviating cell apoptosis and oxidative stress. Network pharmacology showed that TFCJ might be used against IS through the PI3K/AKT signaling pathway. TFCJ reduced cell apoptosis and oxidative stress by increasing the level of p-AKT and p-mTOR in MCAO rats, while the effect of TFCJ was significantly reversed when applying LY294002 (PI3k inhibitor). Conclusion: These results indicated that TFCJ might decrease oxidative stress and apoptosis that are closely related to PI3K/Akt/mTOR pathway in IS. TFCJ is a promising authentic traditional Chinese medicine for the management of IS.
Collapse
Affiliation(s)
- Cong Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Hao Chen
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Hui-hui Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Bin-bin Mao
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Hao Yu
- School of Chinese Medicine, Bozhou University, Bozhou, China
- Department of Pharmacy, College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|