1
|
Chunhui G, Yanqiu Y, Jibing C, Ning L, Fujun L. Exosomes and non-coding RNAs: bridging the gap in Alzheimer's pathogenesis and therapeutics. Metab Brain Dis 2025; 40:84. [PMID: 39754674 PMCID: PMC11700052 DOI: 10.1007/s11011-024-01520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD. Furthermore, lncRNAs and circRNAs can act as competitive endogenous RNAs to inhibit miRNAs, and their interactions can form a complex regulatory network. Exosomes, which are extracellular vesicles (EVs), are believed to be able to transfer ncRNAs between cells, thus playing a regulatory role in the brain by crossing the blood-brain barrier (BBB). Exosomes are part of the intercellular carrier system; therefore, utilizing exosomes to deliver drugs to recipient cells might not activate the immune system, making it a potential strategy to treat central nervous system diseases. In this review, we review that AD is a multifactorial neurological disease and that ncRNAs can regulate its multiple pathogenic mechanisms to improve our understanding of the etiology of AD and to simultaneously regulate multiple pathogenic mechanisms of AD through the binding of ncRNAs to exosomes to improve the treatment of AD.
Collapse
Affiliation(s)
- Guo Chunhui
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - You Yanqiu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Chen Jibing
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Luo Ning
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Li Fujun
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
2
|
Yu Q, Xiao Y, Guan M, Zhou G, Zhang X, Yu J, Han M, Yang W, Wang Y, Li Z. Regulation of ferroptosis in osteoarthritis and osteoarthritic chondrocytes by typical MicroRNAs in chondrocytes. Front Med (Lausanne) 2024; 11:1478153. [PMID: 39564502 PMCID: PMC11573538 DOI: 10.3389/fmed.2024.1478153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disorder impacting bones and joints, worsened by chronic inflammation, immune dysregulation, mechanical stress, metabolic disturbances, and various other contributing factors. The complex interplay of cartilage damage, loss, and impaired repair mechanisms remains a critical and formidable aspect of OA pathogenesis. At the genetic level, multiple genes have been implicated in the modulation of chondrocyte metabolism, displaying both promotive and inhibitory roles. Recent research has increasingly focused on the influence of non-coding RNAs in the regulation of distinct cell types within bone tissue in OA. In particular, an expanding body of evidence highlights the regulatory roles of microRNAs in OA chondrocytes. This review aims to consolidate the most relevant microRNAs associated with OA chondrocytes, as identified in recent studies, and to elucidate their involvement in chondrocyte metabolic processes and ferroptosis. Furthermore, this study explores the complex regulatory interactions between long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in OA, with an emphasis on microRNA-mediated mechanisms. Finally, critical gaps in the current research are identified, offering strategic insights to advance the understanding of OA pathophysiology and guide therapeutic developments in this field.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Guohui Zhou
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Yang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yan Wang
- Scientific Research Center, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
3
|
Mustafin RN. A hypothesis about interrelations of epigenetic factors and transposable elements in memory formation. Vavilovskii Zhurnal Genet Selektsii 2024; 28:476-486. [PMID: 39280851 PMCID: PMC11393658 DOI: 10.18699/vjgb-24-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 09/18/2024] Open
Abstract
The review describes the hypothesis that the drivers of epigenetic regulation in memory formation are transposable elements that influence the expression of specific genes in the brain. The hypothesis is confirmed by research into transposon activation in neuronal stem cells during neuronal differentiation. These changes occur in the hippocampus dentate gyrus, where a pronounced activity of transposons and their insertion near neuron-specific genes have been detected. In experiments on changing the activity of histone acetyltransferase and inhibition of DNA methyltransferase and reverse transcriptase, the involvement of epigenetic factors and retroelements in the mechanisms of memory formation has been shown. Also, a number of studies on different animals have revealed the preservation of long-term memory without the participation of synaptic plasticity. The data obtained suggest that transposons, which are genome sensors highly sensitive to various environmental and internal influences, form memory at the nuclear coding level. Therefore, long-term memory is preserved after elimination of synaptic connections. This is confirmed by the fact that the proteins involved in memory formation, including the transfer of genetic information through synapses between neurons (Arc protein), originate from transposons. Long non-coding RNAs and microRNAs also originate from transposons; their role in memory consolidation has been described. Pathological activation of transposable elements is a likely cause of neurodegenerative diseases with memory impairment. Analysis of the scientific literature allowed us to identify changes in the expression of 40 microRNAs derived from transposons in Alzheimer's disease. For 24 of these microRNAs, the mechanisms of regulation of genes involved in the functioning of the brain have been described. It has been suggested that the microRNAs we identified could become potential tools for regulating transposon activity in the brain in order to improve memory.
Collapse
|
4
|
Valizadeh M, Derafsh E, Abdi Abyaneh F, Parsamatin SK, Noshabad FZR, Alinaghipour A, Yaghoobi Z, Taheri AT, Dadgostar E, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-Coding RNAs and Neurodegenerative Diseases: Information of their Roles in Apoptosis. Mol Neurobiol 2024; 61:4508-4537. [PMID: 38102518 DOI: 10.1007/s12035-023-03849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Apoptosis can be known as a key factor in the pathogenesis of neurodegenerative disorders. In disease conditions, the rate of apoptosis expands and tissue damage may become apparent. Recently, the scientific studies of the non-coding RNAs (ncRNAs) has provided new information of the molecular mechanisms that contribute to neurodegenerative disorders. Numerous reports have documented that ncRNAs have important contributions to several biological processes associated with the increase of neurodegenerative disorders. In addition, microRNAs (miRNAs), circular RNAs (circRNAs), as well as, long ncRNAs (lncRNAs) represent ncRNAs subtypes with the usual dysregulation in neurodegenerative disorders. Dysregulating ncRNAs has been associated with inhibiting or stimulating apoptosis in neurodegenerative disorders. Therefore, this review highlighted several ncRNAs linked to apoptosis in neurodegenerative disorders. CircRNAs, lncRNAs, and miRNAs were also illustrated completely regarding the respective signaling pathways of apoptosis.
Collapse
Affiliation(s)
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Canada
| | | | - Sayedeh Kiana Parsamatin
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IR, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, IR, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| |
Collapse
|
5
|
Canoy RJ, Sy JC, Deguit CD, Castro CB, Dimaapi LJ, Panlaqui BG, Perian W, Yu J, Velasco JM, Sevilleja JE, Gibson A. Non-coding RNAs involved in the molecular pathology of Alzheimer's disease: a systematic review. Front Neurosci 2024; 18:1421675. [PMID: 39005845 PMCID: PMC11243705 DOI: 10.3389/fnins.2024.1421675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia globally, having a pathophysiology that is complex and multifactorial. Recent findings highlight the significant role of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs) in the molecular mechanisms underlying AD. These ncRNAs are involved in critical biological processes such as cell proliferation, apoptosis, oxidative stress, amyloid-beta aggregation, tau phosphorylation, neuroinflammation, and autophagy, which are pivotal in AD development and progression. This systematic review aims to consolidate current scientific knowledge on the role of ncRNAs in AD, making it the first to encompass the four types of ncRNAs associated with the disease. Our comprehensive search and analysis reveal that ncRNAs not only play crucial roles in the pathogenesis of AD but also hold potential as biomarkers for its early detection and as novel therapeutic targets. Specifically, the findings underscore the significance of miRNAs in regulating genes involved in key AD pathways such as activin receptor signaling pathway, actomyosin contractile ring organization, and advanced glycation endproducts-receptor advanced glycation endproducts (AGE-RAGE) signaling pathway. This review also highlights the potential of ncRNAs in unveiling novel diagnostic and therapeutic strategies, emphasizing the need for further research to validate their clinical utility. Our systematic exploration provides a foundation for future bioinformatic analyses and the development of ncRNA-based precision medicine approaches for AD, offering new insights into the disease's molecular pathology and paving the way for innovative treatment strategies. Systematic review registration PROSPERO, https://www.crd.york.ac.uk/prospero/, CRD42022355307.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- SciLore LLC, Kingsbury, TX, United States
- Instiute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Jenica Clarisse Sy
- SciLore LLC, Kingsbury, TX, United States
- Center for Research and Innovation, Ateneo de Manila University School of Medicine and Public Health, Pasig City, Philippines
| | - Christian Deo Deguit
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Caitlin Bridgette Castro
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Lyoneil James Dimaapi
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Beatrice Gabrielle Panlaqui
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Wenzel Perian
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Justine Yu
- Institute for Dementia Care Asia, Quezon City, Philippines
| | - John Mark Velasco
- Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | | | - Anna Gibson
- SciLore LLC, Kingsbury, TX, United States
- Center for Research and Innovation, Ateneo de Manila University School of Medicine and Public Health, Pasig City, Philippines
| |
Collapse
|
6
|
Mustafin RN, Khusnutdinova EK. Involvement of transposable elements in Alzheimer's disease pathogenesis. Vavilovskii Zhurnal Genet Selektsii 2024; 28:228-238. [PMID: 38680184 PMCID: PMC11043511 DOI: 10.18699/vjgb-24-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 05/01/2024] Open
Abstract
Alzheimer's disease affects an average of 5 % of the population with a significant increase in prevalence with age, suggesting that the same mechanisms that underlie aging may influence this pathology. Investigation of these mechanisms is promising for effective methods of treatment and prevention of the disease. Possible participants in these mechanisms are transposons, which serve as drivers of epigenetic regulation, since they form species-specific distributions of non-coding RNA genes in genomes in evolution. Study of miRNA involvement in Alzheimer's disease pathogenesis is relevant, since the associations of protein-coding genes (APOE4, ABCA7, BIN1, CLU, CR1, PICALM, TREM2) with the disease revealed as a result of GWAS make it difficult to explain its complex pathogenesis. Specific expression changes of many genes were found in different brain parts of Alzheimer's patients, which may be due to global regulatory changes under the influence of transposons. Experimental and clinical studies have shown pathological activation of retroelements in Alzheimer's disease. Our analysis of scientific literature in accordance with MDTE DB revealed 28 miRNAs derived from transposons (17 from LINE, 5 from SINE, 4 from HERV, 2 from DNA transposons), the expression of which specifically changes in this disease (decreases in 17 and increases in 11 microRNA). Expression of 13 out of 28 miRNAs (miR-151a, -192, -211, -28, -31, -320c, -335, -340, -378a, -511, -576, -708, -885) also changes with aging and cancer development, which indicates the presence of possible common pathogenetic mechanisms. Most of these miRNAs originated from LINE retroelements, the pathological activation of which is associated with aging, carcinogenesis, and Alzheimer's disease, which supports the hypothesis that these three processes are based on the primary dysregulation of transposons that serve as drivers of epigenetic regulation of gene expression in ontogeny.
Collapse
Affiliation(s)
| | - E K Khusnutdinova
- Bashkir State Medical University, Ufa, Russia Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
7
|
Van der Auwera S, Ameling S, Wittfeld K, Frenzel S, Bülow R, Nauck M, Völzke H, Völker U, Grabe HJ. Circulating microRNA miR-425-5p Associated with Brain White Matter Lesions and Inflammatory Processes. Int J Mol Sci 2024; 25:887. [PMID: 38255959 PMCID: PMC10815886 DOI: 10.3390/ijms25020887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
White matter lesions (WML) emerge as a consequence of vascular injuries in the brain. While they are commonly observed in aging, associations have been established with neurodegenerative and neurological disorders such as dementia or stroke. Despite substantial research efforts, biological mechanisms are incomplete and biomarkers indicating WMLs are lacking. Utilizing data from the population-based Study of Health in Pomerania (SHIP), our objective was to identify plasma-circulating micro-RNAs (miRNAs) associated with WMLs, thus providing a foundation for a comprehensive biological model and further research. In linear regression models, direct association and moderating factors were analyzed. In 648 individuals, we identified hsa-miR-425-5p as directly associated with WMLs. In subsequent analyses, hsa-miR-425-5p was found to regulate various genes associated with WMLs with particular emphasis on the SH3PXD2A gene. Furthermore, miR-425-5p was found to be involved in immunological processes. In addition, noteworthy miRNAs associated with WMLs were identified, primarily moderated by the factors of sex or smoking status. All identified miRNAs exhibited a strong over-representation in neurodegenerative and neurological diseases. We introduced hsa-miR-425-5p as a promising candidate in WML research probably involved in immunological processes. Mir-425-5p holds the potential as a biomarker of WMLs, shedding light on potential mechanisms and pathways in vascular dementia.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
8
|
Adiga D, Eswaran S, Srinath S, Khan NG, Kumar D, Kabekkodu SP. Noncoding RNAs in Alzheimer's Disease: Overview of Functional and Therapeutic Significance. Curr Top Med Chem 2024; 24:1615-1634. [PMID: 38616763 DOI: 10.2174/0115680266293212240405042540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disorder resulting from the complex interaction between genetic, epigenetic, and environmental factors. It represents an impending epidemic and lacks effective pharmacological interventions. The emergence of high throughput sequencing techniques and comprehensive genome evaluation has uncovered a diverse spectrum of noncoding RNA (ncRNA) families. ncRNAs are the critical modulators of an eclectic array of biological processes and are now transpiring as imperative players in diagnosing and treating various diseases, including neurodegenerative disorders. Several ncRNAs are explicitly augmented in the brain, wherein they potentially regulate cognitive abilities and other functions of the central nervous system. Growing evidence suggests the substantial role of ncRNAs as modulators of tau phosphorylation, Aβ production, neuroinflammation, and neuronal survival. It indicates their therapeutic relevance as a biomarker and druggable targets against AD. The current review summarizes the existing literature on the functional significance of ncRNAs in AD pathogenesis and its imminent implications in clinics.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Sriharikrishnaa Srinath
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, Maharashtra, India
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA95616, USA
| | - Shama P Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| |
Collapse
|
9
|
Li Y, Wang H, Chen L, Wei K, Liu Y, Han Y, Xia X. Circ_0003611 regulates apoptosis and oxidative stress injury of Alzheimer's disease via miR-383-5p/KIF1B axis. Metab Brain Dis 2022; 37:2915-2924. [PMID: 35960460 DOI: 10.1007/s11011-022-01051-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/07/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) is a high incidence neurodegenerative disease. Emerging evidence suggests that circular RNAs (circRNAs) play an important modulator in the pathogenesis of AD. The aim of this paper was to reconnoiter the effects of circular RNA_0003611 (circ_0003611) on Aβ-triggered neuronal injury in AD. In this work, the abundance of circ_0003611 was augmented in AD patients and SH-SY5Y and SK-N-SH cells treated with Aβ. Aβ-mediated cell proliferation, apoptosis, inflammatory response, oxidative stress, and glycolysis were abolished through circ_0003611 silencing. Circ_0003611 worked as a miR-383-5p sponge, and the protective role of circ_0003611 absence on Aβ-triggered neuronal injury was overturned by releasing miR-383-5p. Meanwhile, miR-383-5p directly targeted KIF1B, and miR-383-5p upregulation might relieve Aβ-triggered neuronal injury by reducing KIF1B expression. Mechanical analysis discovered that circ_0003611 served as a sponge of miR-383-5p to impact KIF1B expression. These findings indicated that circ_0003611 improved Aβ-triggered neuronal injury in AD through targeting the miR-383-5p/KIF1B axis, which might deliver innovative therapy targeting for AD.
Collapse
Affiliation(s)
- Yong Li
- Sport and Health College of Guangxi Normal University, Guilin, China
| | - Hongli Wang
- Sport and Health College of Guangxi Normal University, Guilin, China
| | - Li Chen
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China
| | - Kailun Wei
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China
| | - Yang Liu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China
| | - Yanbai Han
- Sport and Health College of Guangxi Normal University, Guilin, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China.
| |
Collapse
|
10
|
He L, Zhang F, Zhu Y, Lu M. A crosstalk between circular RNA, microRNA, and messenger RNA in the development of various brain cognitive disorders. Front Mol Neurosci 2022; 15:960657. [PMID: 36329693 PMCID: PMC9622787 DOI: 10.3389/fnmol.2022.960657] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Patients with Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), stroke, and postoperative neurocognitive disorder (POND) are commonly faced with neurocognitive disorders with limited therapeutic options. Some non-coding ribonucleic acids (ncRNAs) are involved in the development of various brain cognitive disorders. Circular RNAs (circRNAs), a typical group of ncRNAs, can function as competitive endogenous RNAs (ceRNAs) to dysregulate shared microRNAs (miRNAs) at post-transcription level, inhibiting regulation of miRNAs on their targeted messenger RNAs (mRNAs). circRNAs are abundant in central nervous system (CNS) diseases and cause brain disorders, but the exact roles of circRNAs are unclear. The crosstalk between circRNA, miRNA, and mRNA plays an important role in the pathogenesis of these neurocognitive dysfunction diseases and abnormal conditions including AD, PD, stroke, TBI, and POND. In this review, we summarized the participation of circRNA in neuroglial damage and inflammation. Finally, we aimed to highlight the regulatory mechanisms of circRNA–miRNA–mRNA networks in the development of various brain cognitive disorders and provide new insights into the therapeutics of these diseases.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, China
- *Correspondence: Liang He
| | - Furong Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, China
| | - Yuling Zhu
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, China
| | - Meilin Lu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Meilin Lu
| |
Collapse
|
11
|
Huang Y, Li Y, Lin W, Fan S, Chen H, Xia J, Pi J, Xu JF. Promising Roles of Circular RNAs as Biomarkers and Targets for Potential Diagnosis and Therapy of Tuberculosis. Biomolecules 2022; 12:biom12091235. [PMID: 36139074 PMCID: PMC9496049 DOI: 10.3390/biom12091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the most threatening infectious diseases worldwide. A series of challenges still exist for TB prevention, diagnosis and treatment, which therefore require more attempts to clarify the pathological and immunological mechanisms in the development and progression of TB. Circular RNAs (circRNAs) are a large class of non-coding RNA, mostly expressed in eukaryotic cells, which are generated by the spliceosome through the back-splicing of linear RNAs. Accumulating studies have identified that circRNAs are widely involved in a variety of physiological and pathological processes, acting as the sponges or decoys for microRNAs and proteins, scaffold platforms for proteins, modulators for transcription and special templates for translation. Due to the stable and widely spread characteristics of circRNAs, they are expected to serve as promising prognostic/diagnostic biomarkers and therapeutic targets for diseases. In this review, we briefly describe the biogenesis, classification, detection technology and functions of circRNAs, and, in particular, outline the dynamic, and sometimes aberrant changes of circRNAs in TB. Moreover, we further summarize the recent progress of research linking circRNAs to TB-related pathogenetic processes, as well as the potential roles of circRNAs as diagnostic biomarkers and miRNAs sponges in the case of Mtb infection, which is expected to enhance our understanding of TB and provide some novel ideas about how to overcome the challenges associated TB in the future.
Collapse
Affiliation(s)
- Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|