1
|
Xiong Q, Li H, Yan Y, Yan Z, Shi Y, Wang R, Cheng S, Deng Z, Zheng G, Tao M, Cao X, Yu Y, He D, Peng D. A systematic UHPLC-Q-TOF-MS/MS-based strategy for analysis of chemical constituents and related in vivo metabolites of Buyang Huanwu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118987. [PMID: 39447712 DOI: 10.1016/j.jep.2024.118987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine, is one of the classic prescriptions for the treatment of ischemic stroke in clinical practice. It has the effects of tonifying qi, activating blood circulation, and promoting meridian circulation. However, its chemical analysis has not been clarified, which greatly hinders its further clinical application. Therefore, it is necessary to clarify the chemical constituents and metabolites profile of BYHWD in vivo. AIM OF THE STUDY Characterizing the chemical basis of BYHWD in vitro, and combing studies of related metabolism in vivo to screen out the potential active components of BYHWD with pharmacological effects in vivo. MATERIALS AND METHODS Twelve male rats weighed 200 ± 20 each were selected for the experiments. According to the fragmentation of different structural types of components and diagnostic ions, UHPLC-Q-TOF-MS/MS was used to classify and clarify the unknown components of BYHWD and identify the material basis of BYHWD in vitro. Then, rat plasma, tissues, feces, and urine were collected for analysis. Based on the similarity of MS responses (accurate molecular weight and secondary fragmentation) and chromatographic behavior (retention time), the in vivo prototype and metabolites were analyzed. Through the phase I and phase II metabolism law, a metabolite library was established to analyze the prototype-matched metabolites. RESULTS A total of 121 in vitro compounds and 55 in vivo prototypes of BYHWD were identified, corresponding to 123 matched prototypes. It was mainly composed of flavonoids, triterpene saponins, nucleosides and lactones both in vitro and in vivo. Quercetin, ligustilide, astragaloside IV, calycosin, paeoniflorin and ferulic acid were the main prototypes and metabolites in plasma and urine. CONCLUSION Quercetin, ligustilide, astragaloside IV, calycosin, paeoniflorin and ferulic acid were the main active ingredients of BYHWD.
Collapse
Affiliation(s)
- Qingping Xiong
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China; National Postdoctoral Rresearch Workstation, Anhui China Resources Jinchan Pharmaceutical Co., LTD, Huaibei, 235000, Anhui, China
| | - Heng Li
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Yajuan Yan
- Clinical Pharmacy Center, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Zhimin Yan
- Department of Pharmacy, Huai 'an Hospital of Traditional Chinese Medicine (Affiliated Hospital of Nanjing University of Traditional Chinese Medicine), Huai'an 223002, Jiangsu, China
| | - Yingying Shi
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Rong Wang
- National Postdoctoral Rresearch Workstation, Anhui China Resources Jinchan Pharmaceutical Co., LTD, Huaibei, 235000, Anhui, China
| | - Siting Cheng
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Zhipeng Deng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Guangzhen Zheng
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Mingtao Tao
- Jiangsu Key Laboratory of Regional Specific Resource Pharmaceutical Transformation, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Xiangyang Cao
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, China.
| | - Yadong Yu
- Department of Neurology, Lianshui County People's Hospital, Huai'an 223400, Jiangsu, China.
| | - Dongbing He
- National Postdoctoral Rresearch Workstation, Anhui China Resources Jinchan Pharmaceutical Co., LTD, Huaibei, 235000, Anhui, China.
| | - Daiyin Peng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
2
|
Zhong G, Wang X, Zhang Q, Zhang X, Fang X, Li S, Pan Y, Ma Y, Wang X, Wan T, Wang Q. Exploring the therapeutic implications of natural compounds modulating apoptosis in vascular dementia. Phytother Res 2024. [PMID: 39223915 DOI: 10.1002/ptr.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Vascular dementia (VaD) is a prevalent form of dementia stemming from cerebrovascular disease, manifesting in memory impairment and executive dysfunction, thereby imposing a substantial societal burden. Unfortunately, no drugs have been approved for the treatment of VaD due to its intricate pathogenesis, and the development of innovative and efficacious medications is urgently needed. Apoptosis, a programmed cell death process crucial for eliminating damaged or unwanted cells within an organism, assumes pivotal roles in embryonic development and tissue homeostasis maintenance. An increasing body of evidence indicates that apoptosis may significantly influence the onset and progression of VaD, and numerous natural compounds have demonstrated significant therapeutic potential. Here, we discuss the molecular mechanisms underlying apoptosis and its correlation with VaD. We also provide a crucial reference for developing innovative pharmaceuticals by systematically reviewing the latest research progress concerning the neuroprotective effects of natural compounds on VaD by regulating apoptosis. Further high-quality clinical studies are imperative to firmly ascertain these natural compounds' clinical efficacy and safety profiles in the treatment of VaD.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueying Zhang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuting Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejing Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Lyu Y, Meng Z, Hu Y, Jiang B, Yang J, Chen Y, Zhou J, Li M, Wang H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia-reperfusion, vascular dementia, and Alzheimer's disease. Front Mol Neurosci 2024; 17:1394932. [PMID: 39169952 PMCID: PMC11335644 DOI: 10.3389/fnmol.2024.1394932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Neurological diseases have consistently represented a significant challenge in both clinical treatment and scientific research. As research has progressed, the significance of mitochondria in the pathogenesis and progression of neurological diseases has become increasingly prominent. Mitochondria serve not only as a source of energy, but also as regulators of cellular growth and death. Both oxidative stress and mitophagy are intimately associated with mitochondria, and there is mounting evidence that mitophagy and oxidative stress exert a pivotal regulatory influence on the pathogenesis of neurological diseases. In recent years, there has been a notable rise in the prevalence of cerebral ischemia/reperfusion injury (CI/RI), vascular dementia (VaD), and Alzheimer's disease (AD), which collectively represent a significant public health concern. Reduced levels of mitophagy have been observed in CI/RI, VaD and AD. The improvement of associated pathology has been demonstrated through the increase of mitophagy levels. CI/RI results in cerebral tissue ischemia and hypoxia, which causes oxidative stress, disruption of the blood-brain barrier (BBB) and damage to the cerebral vasculature. The BBB disruption and cerebral vascular injury may induce or exacerbate VaD to some extent. In addition, inadequate cerebral perfusion due to vascular injury or altered function may exacerbate the accumulation of amyloid β (Aβ) thereby contributing to or exacerbating AD pathology. Intravenous tissue plasminogen activator (tPA; alteplase) and endovascular thrombectomy are effective treatments for stroke. However, there is a narrow window of opportunity for the administration of tPA and thrombectomy, which results in a markedly elevated incidence of disability among patients with CI/RI. It is regrettable that there are currently no there are still no specific drugs for VaD and AD. Despite the availability of the U.S. Food and Drug Administration (FDA)-approved clinical first-line drugs for AD, including memantine, donepezil hydrochloride, and galantamine, these agents do not fundamentally block the pathological process of AD. In this paper, we undertake a review of the mechanisms of mitophagy and oxidative stress in neurological disorders, a summary of the clinical trials conducted in recent years, and a proposal for a new strategy for targeted treatment of neurological disorders based on both mitophagy and oxidative stress.
Collapse
Affiliation(s)
- Yujie Lyu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhipeng Meng
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yunyun Hu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiao Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yiqin Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Zhou
- Xichang Hospital of Traditional Chinese Medicine, Xichang, China
| | - Mingcheng Li
- Qujing 69 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Qujing, China
| | - Huping Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, China
- Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
4
|
Li Y, Li YJ, Fang X, Chen DQ, Yu WQ, Zhu ZQ. Peripheral inflammation as a potential mechanism and preventive strategy for perioperative neurocognitive disorder under general anesthesia and surgery. Front Cell Neurosci 2024; 18:1365448. [PMID: 39022312 PMCID: PMC11252726 DOI: 10.3389/fncel.2024.1365448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xu Fang
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical School of North Sichuan Medical College, Zunyi, China
| | - Dong-Qin Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wan-Qiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Early Clinical Research Ward of Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Fang L, Li J, Cheng H, Liu H, Zhang C. Dual fluorescence images, transport pathway, and blood-brain barrier penetration of B-Met-W/O/W SE. Int J Pharm 2024; 652:123854. [PMID: 38280499 DOI: 10.1016/j.ijpharm.2024.123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Borneol is an aromatic traditional Chinese medicine that can improve the permeability of the blood-brain barrier (BBB), enter the brain, and promote the brain tissue distribution of many other drugs. In our previous study, borneol-metformin hydrochloride water/oil/water composite submicron emulsion (B-Met-W/O/W SE) was prepared using borneol and SE to promote BBB penetration, which significantly increased the brain distribution of Met. However, the dynamic images, transport pathway (uptake and efflux), promotion of BBB permeability, and mechanisms of B-Met-W/O/W SE before and after entering cells have not been clarified. In this study, rhodamine B and coumarin-6 were selected as water-soluble and oil-soluble fluorescent probes to prepare B-Met-W/O/W dual-fluorescent SE (B-Met-W/O/W DFSE) with concentric circle imaging. B-Met-W/O/W SE can be well taken up by brain microvascular endothelial cells (BMECs). The addition of three inhibitors (chlorpromazine hydrochloride, methyl-β-cyclodextrin, and amiloride hydrochloride) indicated that its main pathway may be clathrin-mediated and fossa protein-mediated endocytosis. Meanwhile, B-Met-W/O/W SE was obviously shown to inhibit the efflux of BMECs. Next, BMECs were cultured in the Transwell chamber to establish a BBB model, and Western blot was employed to detect the protein expressions of Occludin, Zona Occludens 1 (ZO-1), and p-glycoprotein (P-gp) after B-Met-W/O/W SE treatment. The results showed that B-Met-W/O/W SE significantly down-regulated the expression of Occludin, ZO-1, and P-gp, which increased the permeability of BBB, promoted drug entry into the brain through BBB, and inhibited BBB efflux. Furthermore, 11 differentially expressed genes (DEGs) and 7 related signaling pathways in BMECs treated with B-W/O/W SE were detected by transcriptome sequencing and verified by quantitative real-time polymerase chain reaction (qRT-PCR). These results provide a scientific experimental basis for the dynamic monitoring, transmembrane transport mode, and permeation-promoting mechanism of B-Met-W/O/W SE as a new brain-targeting drug delivery system.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Junying Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Huanhuan Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
6
|
Chen L, Zhen Y, Wang X, Wang J, Zhu G. Neurovascular glial unit: A target of phytotherapy for cognitive impairments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155009. [PMID: 37573807 DOI: 10.1016/j.phymed.2023.155009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Neurovascular glial unit (NVGU) dysfunction has been reported to be an early and critical event in the pathophysiology of Alzheimer's disease (AD) and vascular dementia (VD). Although herbal medicines, with their favorable safety profiles and low adverse effects, have been suggested to be useful for the treatment of cognitive impairment, the potential role of the NVGU as the target of the effects of herbal medicines is still unclear. PURPOSE This review aimed to retrieve evidence from experimental studies of phytopharmaceuticals targeting the NVGU for the treatment of cognitive impairment in AD and VD, and discussed the potential of phytopharmaceuticals to improve cognitive impairment from the perspective of the NVGU. STUDY DESIGN AND METHODS We systematically searched PubMed, Google Scholar, Web of Science, and CNKI. The keywords used for searching information on the NVGU in the treatment of cognitive impairments included "Alzheimer's disease," "Vascular dementia," "Herbal medicines," "Natural products," "Neurovascular," "Adverse reaction," and "Toxicity, etc." We selected studies on the basis of predefined eligibility criteria. RESULTS NVGU mainly consists of endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes, and neurons, and damage to these cells can induce cognitive impairment by impairing the blood-brain barrier (BBB) and cerebral blood flow (CBF) as well as neuronal function. The active components of herbal medicines, including Ginkgo biloba L., Ginseng Radix et Rhizoma, Epimedium Folium, Chuanxiong Rhizoma, Carthami flos, and Acorus tatarinowii Schott, as well as traditional Chinese medicine prescriptions have shown the potential to improve BBB function and increase CBF to prevent cognitive impairment by inhibiting astrocyte and microglia activation, protecting oligodendrocyte myelin function, reducing neuronal apoptosis, and promoting angiogenesis. CONCLUSIONS Herbal medicines demonstrate great potential to prevent cognitive impairment. Multiple components from herbal medicines may function through different signaling pathways to target the NVGU. Future studies using novel drug-carrier or delivery systems targeting the NVGU will certainly facilitate the development of phytopharmaceuticals for AD and VD.
Collapse
Affiliation(s)
- Lixia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yilan Zhen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
7
|
Li G, Hu C, Liu Y, Lin H. Ligustilide, a novel SIRT1 agonist, alleviates lipopolysaccharide-induced acute lung injury through deacetylation of NICD. Int Immunopharmacol 2023; 121:110486. [PMID: 37327514 DOI: 10.1016/j.intimp.2023.110486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Development and progression of sepsis-induced acute lung injury (ALI) involve apoptosis and oxidative stress in lung epithelial cells. Ligustilide (LIG) is one of the main bioactive constituents derived from the Angelica sinensis. As a novel SIRT1 agonist, LIG owns powerful anti-inflammatory and antioxidative properties, exerting remarkable therapeutic effects on cancers, neurological disorders, and diabetes mellitus. However, whether LIG could protect against lipopolysaccharide (LPS)-induced ALI by activating SIRT1 remains unclear. Mice underwent intratracheal LPS injection to mimic sepsis-induced ALI while MLE-12 cells were treated with LPS for 6 h to establish an in vitro ALI model. At the same time, mice or MLE-12 cells were treated with different doses of LIG to access its pharmacological effect. The results demonstrated that LIG pretreatment could improve LPS-induced pulmonary dysfunction and pathological injury, apart from increasing 7-day survival rate. In addition, LIG pretreatment also decreased inflammation, oxidative stress and apoptosis during LPS-induced ALI. Mechanically, LPS stimulation decreased the expression and activity of SIRT1 but increased the expression of Notch1 and NICD. And LIG could also enhance the interaction between SIRT1 and NICD, thus deacetylating NICD. In vitro experiments also unveiled that EX-527, a selective SIRT1 inhibitor, could abolish LIG-elicited protection in LPS-treated MLE-12 cells. And in SIRT1 knockout mice with ALI, LIG pretreatment also lost its effects on inflammation, apoptosis, and oxidative stress during ALI.
Collapse
Affiliation(s)
- Guang Li
- Department of Critical Care Medicine, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Chunxiao Hu
- Department of Transplant Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Liu
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Huiqing Lin
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
8
|
Ma J, Chen T, Wang R. Astragaloside IV ameliorates cognitive impairment and protects oligodendrocytes from antioxidative stress via regulation of the SIRT1/Nrf2 signaling pathway. Neurochem Int 2023; 167:105535. [PMID: 37209830 DOI: 10.1016/j.neuint.2023.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/22/2023]
Abstract
Subcortical ischemic vascular dementia (SIVD), which is caused by chronic cerebral hypoperfusion, is a common subtype of vascular dementia, accompanied by white matter damage and cognitive impairment. Currently, there are no effective treatments for this condition. Oxidative stress is a key factor in the pathogenesis of white matter damage. Astragaloside IV (AS-IV), one of the main active components of astragaloside, has antioxidant properties and promotes cognitive improvement; however, its effect on SIVD and its potential mechanism remain unknown. We aimed to clarify whether AS-IV had a protective effect against SIVD injury caused by right unilateral common carotid artery occlusion and the underlying mechanism. The results showed that AS-IV treatment improved cognitive function and white matter damage, inhibited oxidative stress and glial cells activation, and promoted the survival of mature oligodendrocytes after chronic cerebral hypoperfusion. Moreover, the protein expression levels of NQO1, HO-1, SIRT1 and Nrf2 were increased by AS-IV treatment. However, pre-treatment with EX-527, a SIRT1-specific inhibitor, eliminated the beneficial effects of AS-IV. These results demonstrate that AS-IV plays a neuroprotective role in SIVD by suppressing oxidative stress and increasing the number of mature oligodendrocytes via the modulation of SIRT1/Nrf2 signaling. Our results support AS-IV as a potential therapeutic agent for SIVD.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China
| | - Ting Chen
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China.
| | - Ranran Wang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China.
| |
Collapse
|
9
|
Zhang K, Zhang C, Teng X, Wang K, Chen M. Bioinformatics and computational chemistry approaches to explore the mechanism of the anti-depressive effect of ligustilide. Sci Rep 2023; 13:5417. [PMID: 37012370 PMCID: PMC10070278 DOI: 10.1038/s41598-023-32495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Depression affects people with multiple adverse outcomes, and the side effects of antidepressants are troubling for depression sufferers. Aromatic drugs have been widely used to relieve symptoms of depression with fewer side effects. Ligustilide (LIG) is the main component of volatile oil in angelica sinensis, exhibiting an excellent anti-depressive effect. However, the mechanisms of the anti-depressive effect of LIG remain unclear. Therefore, this study aimed to explore the mechanisms of LIG exerting an anti-depressive effect. We obtained 12,969 depression-related genes and 204 LIG targets by a network pharmacology approach, which were intersected to get 150 LIG anti-depressive targets. Then, we identified core targets by MCODE, including MAPK3, EGF, MAPK14, CCND1, IL6, CASP3, IL2, MYC, TLR4, AKT1, ESR1, TP53, HIF1A, SRC, STAT3, AR, IL1B, and CREBBP. Functional enrichment analysis of core targets showed a significant association with PI3K/AKT and MAPK signaling pathways. Molecular docking showed strong affinities of LIG with AKT1, MAPK14, and ESR1. Finally, we validated the interactions between these proteins and LIG by molecular dynamics (MD) simulations. In conclusion, this study successfully predicted that LIG exerted an anti-depressive effect through multiple targets, including AKT1, MAPK14, and ESR1, and the pathways of PI3K/AKT and MAPK. The study provides a new strategy to explore the molecular mechanisms of LIG in treating depression.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chaoguo Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiuli Teng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, 277#, Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Shi A, Long Y, Ma Y, Yu S, Li D, Deng J, Wen J, Li X, Wu Y, He X, Hu Y, Li N, Hu Y. Natural essential oils derived from herbal medicines: A promising therapy strategy for treating cognitive impairment. Front Aging Neurosci 2023; 15:1104269. [PMID: 37009463 PMCID: PMC10060871 DOI: 10.3389/fnagi.2023.1104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Cognitive impairment (CI), mainly Alzheimer’s disease (AD), continues to increase in prevalence and is emerging as one of the major health problems in society. However, until now, there are no first-line therapeutic agents for the allopathic treatment or reversal of the disease course. Therefore, the development of therapeutic modalities or drugs that are effective, easy to use, and suitable for long-term administration is important for the treatment of CI such as AD. Essential oils (EOs) extracted from natural herbs have a wide range of pharmacological components, low toxicity, and wide sources, In this review, we list the history of using volatile oils against cognitive disorders in several countries, summarize EOs and monomeric components with cognitive improvement effects, and find that they mainly act by attenuating the neurotoxicity of amyloid beta, anti-oxidative stress, modulating the central cholinergic system, and improving microglia-mediated neuroinflammation. And combined with aromatherapy, the unique advantages and potential of natural EOs in the treatment of AD and other disorders were discussed. This review hopes to provide scientific basis and new ideas for the development and application of natural medicine EOs in the treatment of CI.
Collapse
Affiliation(s)
- Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Nan Li,
| | - Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yuan Hu,
| |
Collapse
|
11
|
Activated AMPK Protects Against Chronic Cerebral Ischemia in Bilateral Carotid Artery Stenosis Mice. Cell Mol Neurobiol 2022:10.1007/s10571-022-01312-6. [DOI: 10.1007/s10571-022-01312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022]
|