1
|
Basir HS, Mirazi N, Komaki A, Mohamadpour B, Hosseini A. Selegiline Improves Cognitive Impairment in the Rat Model of Alzheimer's Disease. Mol Neurobiol 2025; 62:2548-2560. [PMID: 39136906 DOI: 10.1007/s12035-024-04388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/19/2024] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder characterized by cognitive decline. This study was undertaken to evaluate the effects of selegiline (SEL) against AD-induced cognitive deficits and explore the possible involved mechanisms. AD was induced by unilateral intracerebroventricular (U-ICV) injection of 5 μg of amyloid beta1-42 (Aβ1-42), and oral administration of SEL (0.5 mg/kg/day) was performed for 30 consecutive days. Aβ injection resulted in spatial cognitive decline, as demonstrated by a decrease in the time spent in the target zone on the probe day (P < 0.01) in the Barnes maze test (BMT). This spatial cognitive decline was associated with disrupted synaptic plasticity, as indicated by reductions in both components of hippocampal long-term potentiation (LTP), namely population spike amplitude (P < 0.001) and field excitatory postsynaptic potential (P < 0.001). On the other hand, the injection of Aβ resulted in oxidative stress by decreasing total thiol group (TTG) content and increasing malondialdehyde (MDA) levels in the rat plasma (P < 0.001). Additionally, the number of healthy cells in the hippocampal dentate gyrus (DG) and CA1 regions was reduced in AD rats (P < 0.001). However, oral administration of SEL improved spatial cognitive decline in the Aβ-induced AD rats. The results suggest that improvement of neuroplasticity deficiency, regulation of oxidant/antioxidant status, and suppression of neuronal loss by SEL may be the mechanisms underlying its beneficial effect against AD-related spatial cognitive impairment.
Collapse
Affiliation(s)
- Hamid Shokati Basir
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Behnam Mohamadpour
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Zaman Fashami M, Bajelan A, Shakur H, Khakpai F, Rouhollah F, Vaseghi S, Ghorbani Yekta B. The Effect of Zeolite Zinc on Memory Performance and Hippocampal Cell Death in a Rat Model of Alzheimer's-like Disease Induced by Aβ 1-42. Biol Trace Elem Res 2024:10.1007/s12011-024-04474-0. [PMID: 39643797 DOI: 10.1007/s12011-024-04474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the slow and progressive loss of brain structure and function, primarily affecting older individuals. Evidence has shown that disruption of zinc homeostasis in the brain contributes to synaptic dysfunction, as well as impairments in learning and memory. In this study, we evaluated the effect of zeolite zinc on memory performance and hippocampal cell death in a rat model of Alzheimer's disease (AD) induced by intracerebroventricular administration of Aβ1-42. We employed the Morris water maze, shuttle box, and open field tests to assess spatial memory, passive avoidance memory, and anxiety-like behavior, respectively. P-Tau and the amyloid precursor protein (APP) expression, along with hippocampal cell death, were also evaluated. Both Aβ1-42 and zeolite zinc were injected intracerebroventricularly. The results showed that zeolite zinc partially reversed Aβ1-42-induced impairments in memory performance and mitigated the effects of Aβ1-42 on locomotor activity, although it did not fully restore baseline levels. In addition, Aβ1-42 increased the expression of APP and P-Tau, as well as the number of dead cells, whereas zeolite zinc reduced these effects. In conclusion, our findings suggest that while zeolite zinc plays a role in modulating the pathophysiology of AD, its therapeutic effects only partially reverse the progression or symptoms of AD, indicating the need for further investigation into optimal dosing or combination therapies.
Collapse
Affiliation(s)
- Maryam Zaman Fashami
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aida Bajelan
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran University of Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Shakur
- Faculty of Basic Science, Science and Technology Center of Physics, Imam Hossein University, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran University of Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Batool Ghorbani Yekta
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1949635881, Iran.
| |
Collapse
|
3
|
Tork YJ, Naseri E, Basir HS, Komaki A. Protective effects of L-carnitine against beta-amyloid-induced memory impairment and anxiety-like behavior in a rat model of Alzheimer's disease. Eur J Pharmacol 2024; 982:176879. [PMID: 39128806 DOI: 10.1016/j.ejphar.2024.176879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, leads to neurodegeneration and cognitive decline. We investigated the therapeutic effects of L-carnitine on cognitive performance and anxiety-like behavior in a rat model of AD induced by unilateral intracerebroventricular injection of β-amyloid1-42 (Aβ1-42). L-carnitine (100 mg/kg/day) was administered intraperitoneally for 28 consecutive days. Following this, the open-field test, novel object recognition test, elevated plus-maze test, Barnes maze test, and passive avoidance learning test were used to assess locomotor activity, recognition memory, anxiety-like behavior, spatial memory, and passive avoidance memory, respectively. Plasma and hippocampal oxidative stress markers, including total oxidant status (TOS) and total antioxidant capacity (TAC), were examined. In addition, histological investigations were performed in the dentate gyrus of the hippocampus using Congo red staining and hematoxylin and eosin staining. The injection of Aβ1-42 resulted in cognitive deficits and increased anxiety-like behavior. These changes were associated with an imbalance of oxidants and antioxidants in plasma and the hippocampus. Also, neuronal death and Aβ plaque accumulation were increased in the hippocampal dentate gyrus region. However, injection of L-carnitine improved recognition memory, spatial memory, and passive avoidance memory in AD rats. These findings provide evidence that L-carnitine may alleviate anxiety-like behavior and cognitive deficits induced by Aβ1-42 through modulating oxidative-antioxidant status and preventing Aβ plaque accumulation and neuronal death.
Collapse
Affiliation(s)
- Yekta Jahedi Tork
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Erfan Naseri
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Shokati Basir
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Basir HS, Mirazi N, Komaki A, Ramezani M, Hosseini A. Cacao Ameliorates Amyloid Beta-Induced Cognitive and Non-Cognitive Disturbances. Neurosci Insights 2024; 19:26331055241280638. [PMID: 39314637 PMCID: PMC11418343 DOI: 10.1177/26331055241280638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurological disorder characterized by a wide range of cognitive and non-cognitive impairments. The present study was designed to investigate the potential effects of cacao on cognitive and non-cognitive performance and to identify the role of oxidative stress in an AD animal model induced by unilateral intracerebroventricular (U-ICV) injection of amyloid beta1-42 (Aβ1-42). Methods Oral administration of cacao (0.5 g/kg/day) was performed for 60 consecutive days. Following 60 days, the open-field (OF) test, elevated plus-maze (EPM) test, novel object recognition (NOR) test, Barnes maze (BM) test, and Morris water maze (MWM) test were used to evaluate locomotor activity, anxiety-like behavior, recognition memory, and spatial memory, respectively. Total oxidant status (TOS) and total antioxidant capacity (TAC) in plasma were also examined. Furthermore, the number of healthy cells in the hippocampus's dentate gyrus (DG), CA1, and CA3 regions were identified using hematoxylin and eosin staining. Results The results indicated that the injection of Aβ1-42 in rats led to recognition memory and spatial memory impairments, as well as increased anxiety. This was accompanied by decreased total antioxidant capacity (TAC), increased total oxidative stress (TOS), and increased neuronal death. Conversely, cacao treatment in AD rats improved memory function, reduced anxiety, modulated oxidative stress balance, and decreased neuronal death. Conclusion The findings suggest that cacao's ability to improve the balance between oxidants and antioxidants and prevent neuronal loss may be the mechanism underlying its beneficial effect against AD-related cognitive and non-cognitive impairments.
Collapse
Affiliation(s)
- Hamid Shokati Basir
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ramezani
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Basir HS, Mirazi N, Komaki A, Hosseini A. Cacao consumption improves passive avoidance memory impairment in a rat model of Alzheimer's disease: the role of hippocampal synaptic plasticity and oxidative stress. Front Pharmacol 2024; 15:1379264. [PMID: 38756381 PMCID: PMC11096498 DOI: 10.3389/fphar.2024.1379264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: Alzheimer's disease (AD) causes progressive loss of cognitive function and synaptic plasticity, which is the most common form of dementia. The present study was designed to scrutinize the effects of cacao on passive avoidance memory function and to identify the roles of hippocampal synaptic plasticity and oxidative stress in an AD rat model induced by unilateral intracerebroventricular (UICV) injection of amyloid-beta (Aβ). Methods: Oral administration of cacao (500 mg/kg/ day) was given for 2 consecutive months. A memory retention test was conducted 24 h after passive avoidance training was completed. Subsequently, the amplitude of population spike (PS) and slope of field excitatory postsynaptic potentials (fEPSPs) were assessed at hippocampal long-term potentiation (LTP) in perforant pathway-dentate gyrus (PP-DG) synapses. Moreover, total thiol group (TTG) and malondialdehyde (MDA) concentrations were evaluated in the plasma. Furthermore, compact Aβ plaques were detected in the hippocampal DG by performing Congo red staining. Results: As a result of AD induction, passive avoidance memory was impaired; also, reduced fEPSP slopes, PS amplitudes, and content of TTG, and increase in MDA levels in the rats were observed. In contrast, cacao treatment ameliorated passive avoidance memory impairment, improved hippocampal LTP impairment, modulated oxidative-antioxidative status, and delayed Aβ plaques production in AD rats. Disscussion: Conclusively, cacao alleviates Aβ-induced cognitive deficit, probably by the amelioration of hippocampal LTP impairment, modulation of oxidative-antioxidative status, and inhibition of Aβ plaque accumulation.
Collapse
Affiliation(s)
- Hamid Shokati Basir
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolkarim Hosseini
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Ghaderi S, Rashno M, Sarkaki A, Khoshnam SE. Sesamin mitigates lead-induced behavioral deficits in male rats: The role of oxidative stress. Brain Res Bull 2024; 206:110852. [PMID: 38141790 DOI: 10.1016/j.brainresbull.2023.110852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Lead (Pb) is a well-known toxic pollutant that has negative effects on behavioral functions. Sesamin, a phytonutrient of the lignan class, has shown neuroprotective effects in various neurological disorder models. The present study was undertaken to evaluate the putative protective effects of sesamin against Pb-induced behavioral deficits and to identify the role of oxidative stress in male rats. The rats were exposed to 500 ppm of Pb acetate in their drinking water and simultaneously treated orally with sesamin at a dose of 30 mg/kg/day for eight consecutive weeks. Standard behavioral paradigms were used to assess the behavioral functions of the animals during the eighth week of the study. Subsequently, oxidative stress factors were evaluated in both the cerebral cortex and hippocampal regions of the rats. The results of this study showed that Pb exposure triggered anxiety-/depression-like behaviors and impaired object recognition memory, but locomotor activity was indistinguishable from the normal control rats. These behavioral deficiencies were associated with suppressed enzymatic and non-enzymatic antioxidant levels, and enhanced lipid peroxidation in the investigated brain regions. Notably, correlations were detected between behavioral deficits and oxidative stress generation in the Pb-exposed rats. Interestingly, sesamin treatment mitigated anxio-depressive-like behaviors, ameliorated object recognition memory impairment, and modulated oxidative-antioxidative status in the rats exposed to Pb. The results suggest that the anti-oxidative properties of sesamin may be one of the underlying mechanisms behind its beneficial effect in ameliorating behavioral deficits associated with Pb exposure.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran.
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|