1
|
Yan Y, Li X, Yu K, Wu Z, Sun Y, Cheng Z, Zhao B, Nie C, Xia Y. Systematic evaluation of the impact of standard storage conditions on plasmid conjugation behavior in wastewater samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123283. [PMID: 38176637 DOI: 10.1016/j.envpol.2023.123283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Filter mating experiment is widely used to study the conjugation behavior of plasmids and associated antibiotic resistance in environmental settings, however, the influence and biases brought by sample storage conditions (temperature and duration) were not yet systematically elaborated. This study systematically investigated the influence of standard storage conditions (4 °C, -20 °C, -80 °C) on plasmid conjugation behavior in influent (Inf) and activated sludge (AS) samples from sewage treatment plants (STP). The findings revealed a significant reduction in conjugation efficiency under all the tested storage conditions except for 1-week storage at 4 °C. Notably, storing at -80 °C maintained conjugation activities in activated sludge more effectively compared to -20 °C. However, the preservation performance was less effective for influent samples, which consist mainly of anaerobe-dominant communities. Systematic loss of IncH-type plasmids was observed in influent samples stored at 4 °C and -20 °C. Correspondingly, the plasmid-carrying resistome genotypes detected in the influent samples showed a clear downward trend with the increase in storage duration when stored at 4 °C and -20 °C. A relatively uniform composition in terms of incompatibility type and resistome profile was observed across activated sludge samples, regardless of the varied storage conditions. This study highlights the critical impact of storage conditions on plasmid conjugation behavior and resistome composition, offering valuable insights for optimal sample handling in resistome research.
Collapse
Affiliation(s)
- Yuxi Yan
- School of Environment, Harbin Institute of Technology, Harbin 150001, China; School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiang Li
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiqiang Yu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqi Wu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuhong Sun
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cailong Nie
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Izmalkova TY, Sazonova OI, Dymova EA, Sokolov SL, Gafarov AB. Playgrounds in City of Pushchino with Different Types of Coating as Reservoir of Antibiotic-Resistant Strains of Pseudomonas spp. Curr Microbiol 2022; 79:80. [PMID: 35103849 DOI: 10.1007/s00284-022-02768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
In this study, we investigated antibiotic-resistant microorganisms isolated by the direct plating method from 6 playgrounds in the city of Pushchino, Moscow Region, with different types of coating: sand, soil with sand, grass and a modern playground coating made of pressed rubber crumb. According to the results of the study, sand is the cleanest type of coating, both in terms of the total count of cultivated microorganisms (8 × 105/g of substrate) and in terms of the content of resistant strains. The most contaminated both in terms of the total count of cultivated microorganisms (1.2-1.9 × 109/g of substrate) and in terms of the content of antibiotic-resistant strains was the coating of pressed rubber crumb. We isolated 65 antibiotic-resistant strains of fluorescent pseudomonads. Nine Pseudomonas strains were found to contain antibiotic resistance plasmids (one belongs to P-1 incompatibility group, seven to IncP-7 and one to unidentified incompatibility group). For the first time, we discovered a conjugative plasmid pD4A-46 conferring tetracycline resistance and belonging to the P-7 incompatibility group. Taking into account the results obtained under this study, it can be recommended to periodically treat the crumb rubber coating with non-toxic antiseptics, i.e. hydrogen peroxide or chlorhexidine.
Collapse
Affiliation(s)
- Tatiana Yu Izmalkova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation, 142290.
| | - Olesya I Sazonova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation, 142290
| | - Ekaterina A Dymova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation, 142290
| | - Sergei L Sokolov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation, 142290
| | - Arslan B Gafarov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences", pr. Nauki, 5, Pushchino, Moscow Region, Russian Federation, 142290
| |
Collapse
|
3
|
Kosheleva IA, Izmalkova TY, Sazonova OI, Siunova TV, Gafarov AB, Sokolov SL, Boronin AM. Antibiotic-Resistant Microorganisms and Multiple Drug Resistance Determinants in Pseudomonas Bacteria from the Pushchino Wastewater Treatment Facilities. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Petroleum contamination and bioaugmentation in bacterial rhizosphere communities from Avicennia schaueriana. Braz J Microbiol 2018; 49:757-769. [PMID: 29866608 PMCID: PMC6175736 DOI: 10.1016/j.bjm.2018.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/01/2018] [Accepted: 02/14/2018] [Indexed: 11/23/2022] Open
Abstract
Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study.
Collapse
|
5
|
Izmalkova TY, Gafarov AB, Sazonova OI, Sokolov SL, Kosheleva IA, Boronin AM. Diversity of Oil-Degrading Microorganisms in the Gulf of Finland (Baltic Sea) in Spring and in Summer. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Filatova IY, Kazakov AS, Muzafarov EN, Zakharova MV. Protein SgpR of Pseudomonas putida strain AK5 is a LysR-type regulator of salicylate degradation through gentisate. FEMS Microbiol Lett 2017; 364:3924860. [DOI: 10.1093/femsle/fnx112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/03/2017] [Indexed: 11/13/2022] Open
|
7
|
Sazonova OI, Sokolov SL, Prisyazhnaya NV, Izmalkova TY, Kosheleva IA, Boronin AM. Epiphytic microorganisms degrading aromatic hydrocarbons from the phyllosphere of urban woody plants. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Dealtry S, Nour EH, Holmsgaard PN, Ding GC, Weichelt V, Dunon V, Heuer H, Hansen LH, Sørensen SJ, Springael D, Smalla K. Exploring the complex response to linuron of bacterial communities from biopurification systems by means of cultivation-independent methods. FEMS Microbiol Ecol 2015; 92:fiv157. [DOI: 10.1093/femsec/fiv157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 02/03/2023] Open
|
9
|
Fuentes S, Ding GC, Cárdenas F, Smalla K, Seeger M. Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in Central Chile. FEMS Microbiol Ecol 2015; 91:fiv110. [PMID: 26362923 DOI: 10.1093/femsec/fiv110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2015] [Indexed: 11/14/2022] Open
Abstract
Aconcagua River basin (Central Chile) harbors diverse economic activities such as agriculture, mining and a crude oil refinery. The aim of this study was to assess environmental drivers of microbial communities in Aconcagua River estuarine soils, which may be influenced by anthropogenic activities taking place upstream and by natural processes such as tides and flood runoffs. Physicochemical parameters were measured in floodplain soils along the estuary. Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Pseudomonas, Bacillus and Fungi were studied by DGGE fingerprinting of 16S rRNA gene and ribosomal ITS-1 amplified from community DNA. Correlations between environment and communities were assessed by distance-based redundancy analysis. Mainly hydrocarbons, pH and the composed variable copper/arsenic/calcium but in less extent nitrogen and organic matter/phosphorous/magnesium correlated with community structures at different taxonomic levels. Aromatic hydrocarbons degradation potential by bacterial community was studied. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases genes were detected only at upstream sites. Naphthalene dioxygenase ndo genes were heterogeneously distributed along estuary, and related to Pseudomonas, Delftia, Comamonas and Ralstonia. IncP-1 plasmids were mainly present at downstream sites, whereas IncP-7 and IncP-9 plasmids showed a heterogeneous distribution. This study strongly suggests that pH, copper, arsenic and hydrocarbons are main drivers of microbial communities in Aconcagua River estuarine soils.
Collapse
Affiliation(s)
- Sebastián Fuentes
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| | - Guo-Chun Ding
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), 38116 Braunschweig, Germany College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Franco Cárdenas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), 38116 Braunschweig, Germany
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| |
Collapse
|
10
|
Puntus IF, Vlasova EP, Sokolov AP, Zakharchenko NS, Funtikova TV. Properties of non-homologous salicylate hydroxylases of pseudomonus bacteria. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815020155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wolters B, Kyselková M, Krögerrecklenfort E, Kreuzig R, Smalla K. Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1ε subgroup. Front Microbiol 2015; 5:765. [PMID: 25653641 PMCID: PMC4301011 DOI: 10.3389/fmicb.2014.00765] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/16/2014] [Indexed: 12/30/2022] Open
Abstract
Manure is known to contain residues of antibiotics administered to farm animals as well as bacteria carrying antibiotic resistance genes (ARGs). These genes are often located on mobile genetic elements. In biogas plants (BGPs), organic substrates such as manure and plant material are mixed and fermented in order to provide energy, and resulting digestates are used for soil fertilization. The fate of plasmid carrying bacteria from manure during the fermentation process is unknown. The present study focused on transferable antibiotic resistance plasmids from digestates of seven BGPs, using manure as a co-substrate, and their phenotypic and genotypic characterization. Plasmids conferring resistance to either tetracycline or sulfadiazine were captured by means of exogenous plasmid isolation from digestates into Pseudomonas putida KT2442 and Escherichia coli CV601 recipients, at transfer frequencies ranging from 10(-5) to 10(-7). Transconjugants (n = 101) were screened by PCR-Southern blot hybridization and real-time PCR for the presence of IncP-1, IncP-1ε, IncW, IncN, IncP-7, IncP-9, LowGC, and IncQ plasmids. While 61 plasmids remained unassigned, 40 plasmids belonged to the IncP-1ε subgroup. All these IncP-1ε plasmids were shown to harbor the genes tet(A), sul1, qacEΔ1, intI1, and integron gene cassette amplicons of different size. Further analysis of 16 representative IncP-1ε plasmids showed that they conferred six different multiple antibiotic resistance patterns and their diversity seemed to be driven by the gene cassette arrays. IncP-1ε plasmids displaying similar restriction and antibiotic resistance patterns were captured from different BGPs, suggesting that they may be typical of this environment. Our study showed that BGP digestates are a potential source of transferable antibiotic resistance plasmids, and in particular the broad host range IncP-1ε plasmids might contribute to the spread of ARGs when digestates are used as fertilizer.
Collapse
Affiliation(s)
- Birgit Wolters
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics Braunschweig, Germany ; Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry Braunschweig, Germany
| | - Martina Kyselková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Soil Biology České Budějovice, Czech Republic
| | - Ellen Krögerrecklenfort
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics Braunschweig, Germany
| | - Robert Kreuzig
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics Braunschweig, Germany
| |
Collapse
|
12
|
Kosheleva IA, Sazonova OI, Izmalkova TY, Boronin AM. Occurrence of the SAL+ phenotype in soil pseudomonads. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714060101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Shifts in abundance and diversity of mobile genetic elements after the introduction of diverse pesticides into an on-farm biopurification system over the course of a year. Appl Environ Microbiol 2014; 80:4012-20. [PMID: 24771027 DOI: 10.1128/aem.04016-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biopurification systems (BPS) are used on farms to control pollution by treating pesticide-contaminated water. It is assumed that mobile genetic elements (MGEs) carrying genes coding for enzymes involved in degradation might contribute to the degradation of pesticides. Therefore, the composition and shifts of MGEs, in particular, of IncP-1 plasmids carried by BPS bacterial communities exposed to various pesticides, were monitored over the course of an agricultural season. PCR amplification of total community DNA using primers targeting genes specific to different plasmid groups combined with Southern blot hybridization indicated a high abundance of plasmids belonging to IncP-1, IncP-7, IncP-9, IncQ, and IncW, while IncU and IncN plasmids were less abundant or not detected. Furthermore, the integrase genes of class 1 and 2 integrons (intI1, intI2) and genes encoding resistance to sulfonamides (sul1, sul2) and streptomycin (aadA) were detected and seasonality was revealed. Amplicon pyrosequencing of the IncP-1 trfA gene coding for the replication initiation protein revealed high IncP-1 plasmid diversity and an increase in the abundance of IncP-1β and a decrease in the abundance of IncP-1ε over time. The data of the chemical analysis showed increasing concentrations of various pesticides over the course of the agricultural season. As an increase in the relative abundances of bacteria carrying IncP-1β plasmids also occurred, this might point to a role of these plasmids in the degradation of many different pesticides.
Collapse
|
14
|
Dealtry S, Ding GC, Weichelt V, Dunon V, Schlüter A, Martini MC, Papa MFD, Lagares A, Amos GCA, Wellington EMH, Gaze WH, Sipkema D, Sjöling S, Springael D, Heuer H, van Elsas JD, Thomas C, Smalla K. Cultivation-independent screening revealed hot spots of IncP-1, IncP-7 and IncP-9 plasmid occurrence in different environmental habitats. PLoS One 2014; 9:e89922. [PMID: 24587126 PMCID: PMC3933701 DOI: 10.1371/journal.pone.0089922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/25/2014] [Indexed: 11/24/2022] Open
Abstract
IncP-1, IncP-7 and IncP-9 plasmids often carry genes encoding enzymes involved in the degradation of man-made and natural contaminants, thus contributing to bacterial survival in polluted environments. However, the lack of suitable molecular tools often limits the detection of these plasmids in the environment. In this study, PCR followed by Southern blot hybridization detected the presence of plasmid-specific sequences in total community (TC-) DNA or fosmid DNA from samples originating from different environments and geographic regions. A novel primer system targeting IncP-9 plasmids was developed and applied along with established primers for IncP-1 and IncP-7. Screening TC-DNA from biopurification systems (BPS) which are used on farms for the purification of pesticide-contaminated water revealed high abundances of IncP-1 plasmids belonging to different subgroups as well as IncP-7 and IncP-9. The novel IncP-9 primer-system targeting the rep gene of nine IncP-9 subgroups allowed the detection of a high diversity of IncP-9 plasmid specific sequences in environments with different sources of pollution. Thus polluted sites are “hot spots” of plasmids potentially carrying catabolic genes.
Collapse
Affiliation(s)
- Simone Dealtry
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Guo-Chun Ding
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Viola Weichelt
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Vincent Dunon
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Institute for Genome Research and Systems Biology, Bielefeld University, Bielefeld, Germany
| | - María Carla Martini
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Antonio Lagares
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | - William Hugo Gaze
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Sara Sjöling
- Södertörns högskola (Sodertorn University), Inst. för Naturvetenskap, Miljö och medieteknik (School of Natural Sciences, Environmental Studies and media tech), Huddinge, Sweden
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | - Holger Heuer
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | | | - Christopher Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, Warwick, United Kingdom
| | - Kornelia Smalla
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
15
|
Volkova OV, Panov AV, Kosheleva IA, Boronin AM. Classification of IncP-7 plasmids based on structural diversity of their basic replicons. Mol Biol 2013. [DOI: 10.1134/s0026893313020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Panov AV, Volkova OV, Puntus IF, Esikova TZ, Kosheleva IA, Boronin AM. scpA, a new salicylate hydroxylase gene localized in salicylate/caprolactam degradation plasmids. Mol Biol 2013. [DOI: 10.1134/s0026893313010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Babin D, Ding GC, Pronk GJ, Heister K, Kögel-Knabner I, Smalla K. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene. FEMS Microbiol Ecol 2013; 86:3-14. [DOI: 10.1111/1574-6941.12058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Doreen Babin
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants; Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | - Guo-Chun Ding
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants; Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | | | - Katja Heister
- Lehrstuhl für Bodenkunde; Technische Universität München; Freising-Weihenstephan; Germany
| | | | - Kornelia Smalla
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants; Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| |
Collapse
|
18
|
The organization of naphthalene degradation genes in Pseudomonas putida strain AK5. Res Microbiol 2012; 164:244-53. [PMID: 23266498 DOI: 10.1016/j.resmic.2012.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/07/2012] [Indexed: 11/21/2022]
Abstract
The Pseudomonas putida АК5 that was isolated from the slime pit of a Nizhnekamsk oil chemical factory can metabolize naphthalene via salicylate and gentisate. Catabolic genes are localized on non-conjugative IncP-7 plasmid pAK5 of about 115 kb in size. The "classical"nah-1 operon and the novel sgp-operon (salicylate-gentisate pathway) are both involved in naphthalene degradation by P. putida АК5, that was first described for Pseudomonas. The sgp-operon includes six open reading frames (ORFs) (sgpAIKGHB). The four ORFs code for the entire salicylate 5-hydroxylase - oxidoreductase component (sgpA), large and small subunits of the oxigenase component (sgpG and sgpH) and 2Fe-2S ferredoxin (sgpB). Genes for gentisate 1, 2-dioxygenase (sgpI) and fumarylpyruvate hydrolase (sgpK) are located in salicylate 5-hydroxylase genes clustering between sgpA and sgpG. The putative positive regulator for the sgp-operon (sgpR) was found upstream of the sgpA gene and oriented in the opposite direction from sgpA. The putative maleylacetoacetate isomerase gene is located apart, directly downstream from the sgp-operon. The sgp-operon organization and phylogenetic analysis of deduced amino acid sequences indicate that this operon has a mosaic structure according to the modular theory of the evolution of modern catabolic pathways.
Collapse
|
19
|
Structural and molecular genetic analyses of the bacterial carbazole degradation system. Biosci Biotechnol Biochem 2012; 76:1-18. [PMID: 22232235 DOI: 10.1271/bbb.110620] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbazole degradation by several bacterial strains, including Pseudomonas resinovorans CA10, has been investigated over the last two decades. As the initial reaction in degradation pathways, carbazole is commonly oxygenated at angular (C9a) and adjacent (C1) carbons as two hydroxyl groups in a cis configuration. This type of dioxygenation is termed "angular dioxygenation," and is catalyzed by carbazole 1,9a-dioxygenase (CARDO), consisting of terminal oxygenase, ferredoxin, and ferredoxin reductase components. The crystal structures of all components and the electron transfer complex between terminal oxygenase and ferredoxin indicate substrate recognition mechanisms suitable for angular dioxygenation and specific electron transfer among the three components. In contrast, the carbazole degradative car operon of CA10 is located on IncP-7 conjugative plasmid pCAR1. Together with conventional molecular genetic and biochemical investigations, recent genome sequencing and RNA mapping studies have clarified that transcriptional cross-regulation via nucleoid-associated proteins is established between pCAR1 and the host chromosome.
Collapse
|
20
|
Shintani M, Takahashi Y, Yamane H, Nojiri H. The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. Microbes Environ 2011; 25:253-65. [PMID: 21576880 DOI: 10.1264/jsme2.me10155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past few decades, degradative plasmids have been isolated from bacteria capable of degrading a variety of both natural and man-made compounds. Degradative plasmids belonging to three incompatibility (Inc) groups in Pseudomonas (IncP-1, P-7, and P-9) have been well studied in terms of their replication, maintenance, and capacity for conjugative transfer. The host ranges of these plasmids are determined by replication or conjugative transfer systems. The host range of IncP-1 is broad, that of IncP-9 is intermediate, and that of IncP-7 is narrow. To understand the behavior of these plasmids and their hosts in various environments, the survivability of inocula, stability or transferability, and efficiency of biodegradation in environments and microcosms have been monitored. The biodegradation and plasmid transfer in various environments have been observed for all three groups, although the kinds of transconjugants differed with the Inc groups. In some cases, the deletion and amplification of catabolic genes acted to reduce the production of toxic catabolic intermediates, or to increase the activity on a particular catabolic pathway. The combination of degradative genes, the plasmid backbone of each Inc group, and the host of the plasmids is key to the degraders adapting to various hosts or to heterogeneous environments.
Collapse
Affiliation(s)
- Masaki Shintani
- Bioresource Center, Japan Collection of Microorganisms (BRC-JCM), Riken, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | | | | | |
Collapse
|