1
|
Long L, Zhang H, Zhou Z, Duan L, Fan D, Wang R, Xu S, Qiao D, Zhu W. Pyrrole-containing hybrids as potential anticancer agents: An insight into current developments and structure-activity relationships. Eur J Med Chem 2024; 273:116470. [PMID: 38762915 DOI: 10.1016/j.ejmech.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Cancer poses a significant threat to human health. Therefore, it is urgent to develop potent anti-cancer drugs with excellent inhibitory activity and no toxic side effects. Pyrrole and its derivatives are privileged heterocyclic compounds with significant diverse pharmacological effects. These compounds can target various aspects of cancer cells and have been applied in clinical settings or are undergoing clinical trials. As a result, pyrrole has emerged as a promising drug scaffold and has been further probed to get novel entities for the treatment of cancer. This article reviews recent research progress on anti-cancer drugs containing pyrrole. It focuses on the mechanism of action, biological activity, and structure-activity relationships of pyrrole derivatives, aiming to assist in designing and synthesizing innovative pyrrole-based anti-cancer compounds.
Collapse
Affiliation(s)
- Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - ZhiHui Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
2
|
Chen L, Gu R, Li Y, Liu H, Han W, Yan Y, Chen Y, Zhang Y, Jiang Y. Epigenetic target identification strategy based on multi-feature learning. J Biomol Struct Dyn 2024; 42:5946-5962. [PMID: 37827992 DOI: 10.1080/07391102.2023.2259511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 10/14/2023]
Abstract
The identification of potential epigenetic targets for a known bioactive compound is essential and promising as more and more epigenetic drugs are used in cancer clinical treatment and the availability of chemogenomic data related to epigenetics increases. In this study, we introduce a novel epigenetic target identification strategy (ETI-Strategy) that integrates a multi-task graph convolutional neural network prior model and a protein-ligand interaction classification discriminating model using large-scale bioactivity data for a panel of 55 epigenetic targets. Our approach utilizes machine learning techniques to achieve an AUC value of 0.934 for the prior model and 0.830 for the discriminating model, outperforming inverse docking in predicting protein-ligand interactions. When comparing with other open-source target identification tools, it was found that only our tool was able to accurately predict all the targets corresponding to each compound. This further demonstrates the ability of our strategy to take full advantage of molecular-level information as well as protein-level information in molecular activity prediction. Our work highlights the contribution of machine learning in the identification of potential epigenetic targets and offers a novel approach for epigenetic drug discovery and development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lingfeng Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Rui Gu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Li
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Weijie Han
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yingchao Yan
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Yulei Jiang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Xie J, Zhang X, Meng D, Li Y, Deng P. Identification of potentially high drug-like VEGFR2/c-Met dual-target type II kinase inhibitors with symmetric skeletons based on structural screening. J Biomol Struct Dyn 2024; 42:1249-1267. [PMID: 37042992 DOI: 10.1080/07391102.2023.2199082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) and c-Mesenchymal epithelial transition factor (c-Met) are tyrosine kinase receptors associated with the occurrence of malignant tumors. Studies have shown that inhibition of VEGFR2 promotes a feedback increase in c-Met, a mechanism linked to the emergence of resistance to VEGFR2 inhibitors. Therefore, treatment targeting both VEGFR2 and c-Met will have better application prospects. In this study, hierarchical virtual screening was performed on ZINC15, Molport and Mcule-ULTIMATE databases to identify potential VEGFR2/c-Met dual inhibitors. Firstly, the best pharmacophore model for each target was used to cross-screen the three databases, and the compounds that could match the two pharmacophore models were then retained based on the Fit Value of the respective crystal ligands. Compounds ZINC, MOL, and MLB named after their database sources were retained by binding pattern analysis and docking assessment. ADMET predictions indicated that ZINC had significantly higher oral bioavailability compared to the approved drug cabozantinib. This is likely due to ZINC's unique symmetrical backbone with less structure complexity, which may reduce the occurrence of adverse effects. Molecular dynamics simulations and binding free energy analysis showed that all three hit compounds were able to stably bind at the active site, but only ZINC could form high occupancy of hydrogen bonds with both VEGFR2 and c-Met, and also only ZINC had a higher binding free energy than crystal ligands, suggesting that ZINC was the most likely potential VEGFR2/c-Met dual-target inhibitor. This finding provides a promising starting point for the development of VEGFR2/c-Met dual-target inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jiali Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing, China
| | - Xiaoxuan Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing, China
| | - Dan Meng
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing, China
| | - Yihao Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ping Deng
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing, China
| |
Collapse
|
4
|
Bathula R, Lanka G, Chakravarty M, Somadi G, Sivan SK, Jain A, Potlapally SR. Structural insight into PRMT5 inhibitors through amalgamating pharmacophore-based virtual screening, ADME toxicity, and binding energy studies to identify new inhibitors by molecular docking. Struct Chem 2022. [DOI: 10.1007/s11224-022-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Understanding structural characteristics of PARP-1 inhibitors through combined 3D-QSAR and molecular docking studies and discovery of new inhibitors by multistage virtual screening. Struct Chem 2021. [DOI: 10.1007/s11224-021-01765-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Zhang YN, Xu JW, Zhang XC, Zhang XQ, Li LL, Yuan X, Mang DZ, Zhu XY, Zhang F, Dewer Y, Xu L, Wu XM. Organophosphorus insecticide interacts with the pheromone-binding proteins of Athetis lepigone: Implication for olfactory dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122777. [PMID: 32388456 DOI: 10.1016/j.jhazmat.2020.122777] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Athetis lepigone is one of the most severe polyphagous pests, and it has developed resistance to different chemical insecticides. Insects primarily rely on the olfactory system to recognize various environmental chemicals, including xenobiotics such as insecticides. Here, we expressed two A. lepigone pheromone-binding proteins (AlepPBP2 and AlepPBP3), and observed they had higher binding affinities to phoxim than other insecticides, with Ki was 3.30 ± 0.38 μM and 3.27 ± 0.10 μM, respectively. Molecular dynamics simulation, binding mode analysis, and computational alanine scanning showed that six residues (Phe15, Phe39, Ile55, Leu65, Ile97, and Phe122) of AlepPBP2 and three residues (Phe12, Ile52, and Ile134) of AlepPBP3 maybe as potential residues that can change protein ability to bind an organophosphorus insecticide phoxim. Then, we used site-directed mutagenesis assay to mutate these residues into alanine, respectively. Subsequently, the binding assays displayed that Phe15, Phe39, and Ile97 of AlepPBP2, Phe12 and Ile134 of AlepPBP3 caused a significant decrease of AlepPBPs binding ability to phoxim, suggesting they should play crucial roles in the AlepPBPs/phoxim interactions. Our findings could further advance in using PBPs as unique targets to design and develop precise and environmentally-friendly pest control agents with high insecticidal potential using a computer-aided drug design (CADD) approach.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China.
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiao-Chun Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiao-Qing Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University, Guangzhou, China; Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai, China
| | - Ding-Ze Mang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria, Egypt
| | - Lu Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China.
| | - Xiao-Min Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China.
| |
Collapse
|
7
|
Zhang YN, Zhang XQ, Zhang XC, Xu JW, Li LL, Zhu XY, Wang JJ, Wei JY, Mang DZ, Zhang F, Yuan X, Wu XM. Key Amino Acid Residues Influencing Binding Affinities of Pheromone-Binding Protein from Athetis lepigone to Two Sex Pheromones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6092-6103. [PMID: 32392414 DOI: 10.1021/acs.jafc.0c01572] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Athetis lepigone is a polyphagous pest found around the world that feeds on maize, wheat, and various other important crops. Although it exhibits a degree of resistance to various chemical insecticides, an effective pest-control method has not yet been developed. The sex pheromone communication system plays an essential role in the mating and reproduction of moths, in which pheromone-binding proteins (PBPs) are crucial genes. In this study, we cloned and purified the protein AlepPBP1 using an E. coli expression system and found it had a higher binding affinity to two sex pheromones of A. lepigone, namely, Z7-12:Ac and Z9-14:Ac (with Ki 0.77 ± 0.10 and 1.10 ± 0.20 μM, respectively), than to other plant volatiles. The binding-mode analysis of protein conformation with equilibrium stabilization was obtained using molecular dynamics (MD) simulation and indicated that hydrophobic interactions involving several nonpolar residues were the main driving force for the binding affinity of AlepPBP1 with sex pheromones. Computational alanine scanning (CAS) was performed to further identify key amino acid residues and validate their binding contributions. Each key residue, including Phe36, Trp37, Val52, and Phe118, was subsequently mutated into alanine using site-directed mutagenesis. Binding assays showed that the efficient binding abilities to Z7-12:Ac (F36A, W37A, and F118A) and Z9-14:Ac (F36A, W37A, V52A, and F118A) were almost lost in the mutated proteins. Our results demonstrated that these key amino acid residues are crucial for determining the binding ability of AlepPBP1 to sex pheromones. These findings provide a basis for the use of AlepPBP1 in the studies as a specific target for the development of novel behavioral antagonists with marked inhibition or mating-disruption abilities using computer-aided drug design (CADD).
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Xiao-Qing Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiao-Chun Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Juan-Juan Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Jun-Yuan Wei
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Ding-Ze Mang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan 250100, P. R. China
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University, Guangzhou 510000, P. R. China
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519000, P. R. China
| | - Xiao-Min Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, P. R. China
| |
Collapse
|
8
|
McCormack K. The cardioprotective effect of dexrazoxane (Cardioxane) is consistent with sequestration of poly(ADP-ribose) by self-assembly and not depletion of topoisomerase 2B. Ecancermedicalscience 2018; 12:889. [PMID: 30792806 PMCID: PMC6351063 DOI: 10.3332/ecancer.2018.889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
Following systematic scrutiny of the evidence in support of the hypothesis that the cardioprotective mechanism of action of dexrazoxane is mediated by a 'depletion' or 'downregulation' of Top2β protein levels in heart tissue, the author concludes that this hypothesis is untenable. In seeking to understand how dexrazoxane protects the heart, the outcomes of a customised association rule learning algorithm incorporating the use of antecedent surrogate variables (CEME, 2017 McCormack Pharma) reveal a previously unknown relationship between dexrazoxane and poly(ADP-ribose) (PAR) polymer. The author shows how this previously unknown relationship explains both acute and long-term cardioprotection in patients receiving anthracyclines. In addition, as a direct inhibitor of PAR dexrazoxane has access to the epigenome and this offers a new insight into protection by dexrazoxane against doxorubicin-induced late-onset damage [McCormack K, manuscript in preparation]. Notably, through this review article, the author illustrates the practical application of probing natural language text using an association rule learning algorithm for the discovery of new and interesting associations that, otherwise, would remain lost. Historically, the use of CEME enabled the first report of the capacity of a small molecule to catalyse the hybrid self-assembly of a nucleic acid biopolymer via canonical and non-canonical, non-covalent interactions analogous to Watson Crick and Hoogsteen base pairing, respectively.
Collapse
Affiliation(s)
- Keith McCormack
- McCormack Pharma, a division of McCormack Ltd, Stirling House, 9 Burroughs Gardens, London NW4 4AU, UK
| |
Collapse
|
9
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|
10
|
Kashyap A, Singh PK, Satpati S, Verma H, Silakari O. Pharmacophore modeling and molecular dynamics approach to identify putative DNA Gyrase B inhibitors for resistant tuberculosis. J Cell Biochem 2018; 120:3149-3159. [DOI: 10.1002/jcb.27579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/08/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Aanchal Kashyap
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab India
| | - Pankaj Kumar Singh
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab India
| | - Suresh Satpati
- Institute of Life Sciences, Department of Pharmaceutical Sciences and Drug Research Bhubaneswar Orissa India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab India
| |
Collapse
|
11
|
Wang Y, Yang L, Hou J, Zou Q, Gao Q, Yao W, Yao Q, Zhang J. Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking. J Biomol Struct Dyn 2018; 37:649-670. [PMID: 29380672 DOI: 10.1080/07391102.2018.1434833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dual-target inhibitors tend to improve the response rate in treating tumors, comparing with the single-target inhibitors. Matrix metalloproteinase-2 (MMP-2) and histone deacetylase-6 (HDAC-6) are attractive targets for cancer therapy. In this study, the hierarchical virtual screening of dual MMP-2/HDAC-6 inhibitors from natural products is investigated. The pharmacophore model of MMP-2 inhibitors is built based on ligands, but the pharmacophore model of HDAC-6 inhibitors is built based on the experimental crystal structures of multiple receptor-ligand complexes. The reliability of these two pharmacophore models is validated subsequently. The hierarchical virtual screening, combining these two different pharmacophore models of MMP-2 and HDAC-6 inhibitors with molecular docking, is carried out to identify the dual MMP-2/HDAC-6 inhibitors from a database of natural products. The four potential dual MMP-2/HDAC-6 inhibitors of natural products, STOCK1 N-46177, STOCK1 N-52245, STOCK1 N-55477, and STOCK1 N-69706, are found. The studies of binding modes show that the screened four natural products can simultaneously well bind with the MMP-2 and HDAC-6 active sites by different kinds of interactions, to inhibit the MMP-2 and HDAC-6 activities. In addition, the ADMET properties of screened four natural products are assessed. These found dual MMP-2/HDAC-6 inhibitors of natural products could serve as the lead compounds for designing the new dual MMP-2/HDAC-6 inhibitors having higher biological activities by carrying out structural modifications and optimizations in the future studies.
Collapse
Affiliation(s)
- Yijun Wang
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Limei Yang
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Jiaying Hou
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Qing Zou
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Qi Gao
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Wenhui Yao
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Qizheng Yao
- c School of Pharmacy , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Ji Zhang
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China.,b State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| |
Collapse
|
12
|
Chadha N, Silakari O. Pharmacophore based design of some multi-targeted compounds targeted against pathways of diabetic complications. J Mol Graph Model 2017; 76:412-418. [DOI: 10.1016/j.jmgm.2017.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/20/2023]
|
13
|
Structure-based design of new poly (ADP-ribose) polymerase (PARP-1) inhibitors. Mol Divers 2017; 21:655-660. [DOI: 10.1007/s11030-017-9754-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
|