1
|
Song S, Wang Y, Yu F. Construction of 1,4-Dihydropyridines: The Evolution of C4 Source. Top Curr Chem (Cham) 2023; 381:30. [PMID: 37749452 DOI: 10.1007/s41061-023-00440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
The field of cascade cyclization for the construction of 1,4-dihydropyridines (1,4-DHPs) has been continuously expanding during the last decades because of their broad-spectrum biological and synthetic importance. To date, many methods have been developed, mainly including the Hantzsch reaction, Hantzsch-like reaction and newly developed cascade cyclization, in which various synthons have been successively developed as C4 sources of 1,4-DHPs. This review presents the cascade cyclization synthesis strategy for the construction of 1,4-DHPs according to various C4 sources from carbonyl compounds, alkenyl fragments, alcohols, aliphatic amines, glycines and other C4 sources.
Collapse
Affiliation(s)
- Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, 650092, People's Republic of China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
2
|
Naikoo RA, Kumar R, Kumar V, Bhargava G. Recent Developments in the Synthesis of Bicyclic Condensed Pyrimidinones. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220112152330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Functionalized bicyclic pyrimidinones and their derivatives are significant heterocyclic scaffolds being their all-around prevalence in biologically potent compounds. In several attempts to explore the different synthetic methodologies for the construction of bicyclic condensed pyrimidinones, different researchers from all across the globe have reported numerous substantial methods. In the present review, considerable work has been critically compiled on the synthesis of substituted and functionalized bicyclic pyrimidinones from 2000 onwards.
Collapse
Affiliation(s)
- Rayees Ahmad Naikoo
- Department of Chemical Sciences, IKG Punjab Technical University, Kapurthala 144603, Punjab, India
| | - Rupesh Kumar
- Department of Chemical Sciences, IKG Punjab Technical University, Kapurthala 144603, Punjab, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Gaurav Bhargava
- Department of Chemical Sciences, IKG Punjab Technical University, Kapurthala 144603, Punjab, India
| |
Collapse
|
3
|
Wang J, Zhu S, Liu Y, Zhu X, Shi K, Li X, Zhu S. Microwave-assisted multicomponent reaction: An efficient synthesis of indolyl substituted and spiroxindole pyrido[2,3-d]pyrimidine derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2001019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jing Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuang Zhu
- School of Life Science, Xuzhou Medical university, Xuzhou, Jiangsu, China
| | - Yanni Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaotong Zhu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kexin Shi
- School of Life Science, Xuzhou Medical university, Xuzhou, Jiangsu, China
| | - Xiang Li
- School of Life Science, Xuzhou Medical university, Xuzhou, Jiangsu, China
| | - Songlei Zhu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
El-Mekabaty A, Etman HA, Mosbah A, Fadda AA. Reactivity of Barbituric, Thiobarbituric Acids and Their Related Analogues: Synthesis of Substituted and Heterocycles-based Pyrimidines. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200608134859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Barbituric, thiobarbituric acids and their related analogs are reactive synthons for
the synthesis of drugs and biologically, and pharmaceutically active pyrimidines. The present
review aimed to summarize the recent advances in the synthesis of different alkylsubstituted,
fused cycles, spiro-, and binary heterocycles incorporated pyrimidine skeleton
based on barbituric derivatives. In this sequence, the eco-friendly techniques under catalytic
conditions were used for the diverse types of multicomponent reactions under different
conditions for the synthesis of various types of heterocycles. Nano-catalysts are efficient for
the synthesis of these compounds in high yields and effective catalyst reusability. The compounds
are potent antibacterial, cytotoxic, xanthine oxidase inhibitory activities, and attend
as urease inhibitors. The projected mechanisms for the synthesis of pyranopyrimidines, benzochromenopyrimidines,
chromeno-pyranopyrimidines, spiroxyindoles, oxospiro-tricyclic furopyrimidines, pyrimidine-based monoand
bicyclic pyridines were discussed. The potent and diverse biological activities for instance, antioxidant,
antibacterial, cytotoxic, and xanthine oxidase inhibitory activities, as well as urease inhibitors, are specified.
Collapse
Affiliation(s)
- Ahmed El-Mekabaty
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| | - Hassan A. Etman
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| | - Ahmed Mosbah
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| | - Ahmed A. Fadda
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| |
Collapse
|
5
|
Khopkar S, Shankarling G. Squaric acid: an impressive organocatalyst for the synthesis of biologically relevant 2,3-dihydro-1H-perimidines in water. J CHEM SCI 2020. [DOI: 10.1007/s12039-019-1735-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Shaabani A, Hooshmand SE. Diversity-oriented catalyst-free synthesis of pseudopeptides containing rhodanine scaffolds via a one-pot sequential isocyanide-based six-component reactions in water using ultrasound irradiation. ULTRASONICS SONOCHEMISTRY 2018; 40:84-90. [PMID: 28946494 DOI: 10.1016/j.ultsonch.2017.06.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
A planning strategy for diversity-oriented catalyst-free synthesis of pseudopeptides containing rhodanine scaffolds has been developed via a novel one-pot sequential six-component reaction in water. This approach is an efficient, environmentally friendly and expeditious procedure for direct access to wide ranges of pharmacologically significant and structurally interesting compounds based on the union of multicomponent reactions approach via tandem Michael/domino cycloaddition/Ugi reactions sequence from readily available starting materials. The syntheses were achieved by reaction of various primary amines, carbon disulfide, maleic anhydride or itaconic anhydride, aromatic aldehydes, anilines and isocyanides under ultrasound irradiation at room temperature in good yields. Providing of pseudopeptides containing rhodanines with the tandem formation of one new heterocyclic ring as well as creating the seven new bonds such as carbon-carbon, carbon-nitrogen, carbon-oxygen and carbon-sulfur with great efficiency and high atom/bond-forming/structure economy are outstanding features of this designed synthetic route.
Collapse
Affiliation(s)
- Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, Tehran, Iran.
| | - Seyyed Emad Hooshmand
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, Tehran, Iran
| |
Collapse
|