1
|
Shakya A, Chikhale RV, Bhat HR, Alasmary FA, Almutairi TM, Ghosh SK, Alhajri HM, Alissa SA, Nagar S, Islam MA. Pharmacoinformatics-based identification of transmembrane protease serine-2 inhibitors from Morus Alba as SARS-CoV-2 cell entry inhibitors. Mol Divers 2021; 26:265-278. [PMID: 33786727 PMCID: PMC8009078 DOI: 10.1007/s11030-021-10209-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022]
Abstract
Transmembrane protease serine-2 (TMPRSS2) is a cell-surface protein expressed by epithelial cells of specific tissues including those in the aerodigestive tract. It helps the entry of novel coronavirus (n-CoV) or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the host cell. Successful inhibition of the TMPRSS2 can be one of the crucial strategies to stop the SARS-CoV-2 infection. In the present study, a set of bioactive molecules from Morus alba Linn. were screened against the TMPRSS2 through two widely used molecular docking engines such as Autodock vina and Glide. Molecules having a higher binding affinity toward the TMPRSS2 compared to Camostat and Ambroxol were considered for in-silico pharmacokinetic analyses. Based on acceptable pharmacokinetic parameters and drug-likeness, finally, five molecules were found to be important for the TMPRSS2 inhibition. A number of bonding interactions in terms of hydrogen bond and hydrophobic interactions were observed between the proposed molecules and ligand-interacting amino acids of the TMPRSS2. The dynamic behavior and stability of best-docked complex between TRMPRSS2 and proposed molecules were assessed through molecular dynamics (MD) simulation. Several parameters from MD simulation have suggested the stability between the protein and ligands. Binding free energy of each molecule calculated through MM-GBSA approach from the MD simulation trajectory suggested strong affection toward the TMPRSS2. Hence, proposed molecules might be crucial chemical components for the TMPRSS2 inhibition.
Collapse
Affiliation(s)
- Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786 004, India
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR5 7TJ, UK
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786 004, India
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786 004, India
| | - Hassna Mohammed Alhajri
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Siham A Alissa
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Shuchi Nagar
- Bioinformatics Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK. .,School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa. .,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
2
|
Arora M, Choudhary S, Silakari O. In silico guided designing of 4-(1H-benzo[d]imidazol-2-yl)phenol-based mutual-prodrugs of NSAIDs: synthesis and biological evaluation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:761-784. [PMID: 32867537 DOI: 10.1080/1062936x.2020.1810117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The free COOH group of conventional NSAIDs is a structural feature for non-selective cyclooxygenase (COX) inhibition and the molecular cause of their gastrointestinal (GI) toxicity. In this context, an in house database of synthesizable ester prodrugs of some well-known NSAIDs was developed by combining their -COOH group with -OH of a newly identified antioxidant 4-(1H-benzo[d]imidazol-2-yl)phenol (BZ). The antioxidant potential of BZ was unveiled through in silico PASS prediction and in vitro/in vivo evaluation. The in house database of NSAIDs-BZ prodrugs was first subjected to screening with our previously reported pharmacophore models of hCES1 (AAHRR.430) and hCES2 (AHHR.21) for determining hydrolytic susceptibility. Biotransformation behaviour of screened prodrugs was then assessed by using QM/MM and sterimol parameterization, followed by ADMET calculations to predict the drug likeness. On the basis of in silico results, five prodrugs were duly synthesized and the best three were subject to the in vivo evaluation for their anti-inflammatory, analgesic, antioxidant activities, and ulcerogenic index. Among these prodrugs, BN2 and BN5 displayed better anti-inflammatory and analgesics potential in comparison to their parent drugs. All the prodrugs were found to be gastro sparing in the rat model and significantly improved the levels of oxidative stress biomarkers in both blood plasma as well as gastric homogenate.
Collapse
Affiliation(s)
- M Arora
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University , Patiala, India
| | - S Choudhary
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University , Patiala, India
| | - O Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University , Patiala, India
| |
Collapse
|