1
|
Medina-Franco JL, Sánchez-Cruz N, López-López E, Díaz-Eufracio BI. Progress on open chemoinformatic tools for expanding and exploring the chemical space. J Comput Aided Mol Des 2021; 36:341-354. [PMID: 34143323 PMCID: PMC8211976 DOI: 10.1007/s10822-021-00399-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023]
Abstract
The concept of chemical space is a cornerstone in chemoinformatics, and it has broad conceptual and practical applicability in many areas of chemistry, including drug design and discovery. One of the most considerable impacts is in the study of structure-property relationships where the property can be a biological activity or any other characteristic of interest to a particular chemistry discipline. The chemical space is highly dependent on the molecular representation that is also a cornerstone concept in computational chemistry. Herein, we discuss the recent progress on chemoinformatic tools developed to expand and characterize the chemical space of compound data sets using different types of molecular representations, generate visual representations of such spaces, and explore structure-property relationships in the context of chemical spaces. We emphasize the development of methods and freely available tools focusing on drug discovery applications. We also comment on the general advantages and shortcomings of using freely available and easy-to-use tools and discuss the value of using such open resources for research, education, and scientific dissemination.
Collapse
Affiliation(s)
- José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| | - Norberto Sánchez-Cruz
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.,Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, 07000, Mexico City, Mexico
| | - Bárbara I Díaz-Eufracio
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| |
Collapse
|
2
|
López-López E, Barrientos-Salcedo C, Prieto-Martínez FD, Medina-Franco JL. In silico tools to study molecular targets of neglected diseases: inhibition of TcSir2rp3, an epigenetic enzyme of Trypanosoma cruzi. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:203-229. [PMID: 32951812 DOI: 10.1016/bs.apcsb.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest to study and address neglected tropical diseases (NTD). To this end, in silico methods can serve as the bridge that connects academy and industry, encouraging the development of future treatments against these diseases. This chapter discusses current challenges in the development of new therapies, available computational methods and successful cases in computer-aided design with particular focus on human trypanosomiasis. Novel targets are also discussed. As a case study, we identify amentoflavone as a potential inhibitor of TcSir2rp3 (sirtuine) from Trypanosoma cruzi (20.03 μM) with a workflow that integrates chemoinformatic approaches, molecular modeling, and theoretical affinity calculations, as well as in vitro assays.
Collapse
Affiliation(s)
- Edgar López-López
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico; Department of Pharmacology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Fernando D Prieto-Martínez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
3
|
Naveja JJ, Pilón-Jiménez BA, Bajorath J, Medina-Franco JL. A general approach for retrosynthetic molecular core analysis. J Cheminform 2019; 11:61. [PMID: 33430974 PMCID: PMC6760108 DOI: 10.1186/s13321-019-0380-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/04/2019] [Indexed: 11/13/2022] Open
Abstract
Scaffold analysis of compound data sets has reemerged as a chemically interpretable alternative to machine learning for chemical space and structure–activity relationships analysis. In this context, analog series-based scaffolds (ASBS) are synthetically relevant core structures that represent individual series of analogs. As an extension to ASBS, we herein introduce the development of a general conceptual framework that considers all putative cores of molecules in a compound data set, thus softening the often applied “single molecule–single scaffold” correspondence. A putative core is here defined as any substructure of a molecule complying with two basic rules: (a) the size of the core is a significant proportion of the whole molecule size and (b) the substructure can be reached from the original molecule through a succession of retrosynthesis rules. Thereafter, a bipartite network consisting of molecules and cores can be constructed for a database of chemical structures. Compounds linked to the same cores are considered analogs. We present case studies illustrating the potential of the general framework. The applications range from inter- and intra-core diversity analysis of compound data sets, structure–property relationships, and identification of analog series and ASBS. The molecule–core network herein presented is a general methodology with multiple applications in scaffold analysis. New statistical methods are envisioned that will be able to draw quantitative conclusions from these data. The code to use the method presented in this work is freely available as an additional file. Follow-up applications include analog searching and core structure–property relationships analyses.![]()
Collapse
Affiliation(s)
- J Jesús Naveja
- PECEM, School of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico. .,Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico.
| | - B Angélica Pilón-Jiménez
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, 53115, Bonn, Germany
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico.
| |
Collapse
|
4
|
Naveja JJ, Medina-Franco JL. Finding Constellations in Chemical Space Through Core Analysis. Front Chem 2019; 7:510. [PMID: 31380353 PMCID: PMC6646408 DOI: 10.3389/fchem.2019.00510] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Herein we introduce the constellation plots as a general approach that merges different and complementary molecular representations to enhance the information contained in a visual representation and analysis of chemical space. The method is based on a combination of a sub-structure based representation and classification of compounds with a "classical" coordinate-based representation of chemical space. A distinctive outcome of the method is that organizing the compounds in analog series leads to the formation of groups of molecules, aka "constellations" in chemical space. The novel approach is general and can be used to rapidly identify, for instance, insightful and "bright" Structure-Activity Relationships (StARs) in chemical space that are easy to interpret. This kind of analysis is expected to be especially useful for lead identification in large datasets of unannotated molecules, such as those obtained through high-throughput screening. We demonstrate the application of the method using two datasets of focused inhibitors designed against DNMTs and AKT1.
Collapse
Affiliation(s)
- J. Jesús Naveja
- PECEM, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José L. Medina-Franco
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Saldívar-González FI, Pilón-Jiménez BA, Medina-Franco JL. Chemical space of naturally occurring compounds. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AbstractThe chemical space of naturally occurring compounds is vast and diverse. Other than biologics, naturally occurring small molecules include a large variety of compounds covering natural products from different sources such as plant, marine, and fungi, to name a few, and several food chemicals. The systematic exploration of the chemical space of naturally occurring compounds have significant implications in many areas of research including but not limited to drug discovery, nutrition, bio- and chemical diversity analysis. The exploration of the coverage and diversity of the chemical space of compound databases can be carried out in different ways. The approach will largely depend on the criteria to define the chemical space that is commonly selected based on the goals of the study. This chapter discusses major compound databases of natural products and cheminformatics strategies that have been used to characterize the chemical space of natural products. Recent exemplary studies of the chemical space of natural products from different sources and their relationships with other compounds are also discussed. We also present novel chemical descriptors and data mining approaches that are emerging to characterize the chemical space of naturally occurring compounds.
Collapse
|
6
|
López-López E, Naveja JJ, Medina-Franco JL. DataWarrior: an evaluation of the open-source drug discovery tool. Expert Opin Drug Discov 2019; 14:335-341. [PMID: 30806519 DOI: 10.1080/17460441.2019.1581170] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION DataWarrior is open and interactive software for data analysis and visualization that integrates well-established and novel chemoinformatics algorithms in a single environment. Since its public release in 2014, DataWarrior has been used by research groups in universities, government, and industry. Areas covered: Herein, the authors discuss, in a critical manner, the tools and distinct technical features of DataWarrior and analyze the areas of opportunity. Authors also present the most common applications as well as emerging uses in research areas beyond drug discovery with an emphasis on multidisciplinary projects. Expert opinion: In the era of big data and data-driven science, DataWarrior stands out as a technology that combines prediction of physicochemical properties of pharmaceutical interest, cheminformatics calculations, multivariate data analysis, and interactive visualization with dynamic plots. The well-established chemoinformatics tools implemented in DataWarrior, as well as the innovative algorithms, make the technology useful and attractive as revealed by the increasing number of documented applications.
Collapse
Affiliation(s)
- Edgar López-López
- a Department of Pharmacy, School of Chemistry , National Autonomous University of Mexico , Mexico City , Mexico.,b Medicinal Chemistry Laboratory , University of Veracruz , Veracruz , Mexico
| | - J Jesús Naveja
- a Department of Pharmacy, School of Chemistry , National Autonomous University of Mexico , Mexico City , Mexico.,c PECEM, Faculty of Medicine , National Autonomous University of Mexico , Mexico City , Mexico
| | - José L Medina-Franco
- a Department of Pharmacy, School of Chemistry , National Autonomous University of Mexico , Mexico City , Mexico
| |
Collapse
|
7
|
BIOFACQUIM: A Mexican Compound Database of Natural Products. Biomolecules 2019; 9:biom9010031. [PMID: 30658522 PMCID: PMC6358837 DOI: 10.3390/biom9010031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Compound databases of natural products have a major impact on drug discovery projects and other areas of research. The number of databases in the public domain with compounds with natural origins is increasing. Several countries, Brazil, France, Panama and, recently, Vietnam, have initiatives in place to construct and maintain compound databases that are representative of their diversity. In this proof-of-concept study, we discuss the first version of BIOFACQUIM, a novel compound database with natural products isolated and characterized in Mexico. We discuss its construction, curation, and a complete chemoinformatic characterization of the content and coverage in chemical space. The profile of physicochemical properties, scaffold content, and diversity, as well as structural diversity based on molecular fingerprints is reported. BIOFACQUIM is available for free.
Collapse
|