1
|
Ni Q, Liu X, Song Z, Ma Y. Nickel-Catalyzed Cross-Coupling of Aziridines with Thioesters toward Atom-Economic Synthesis of β-Sulfanyl Amides. Org Lett 2024; 26:8457-8462. [PMID: 39331476 DOI: 10.1021/acs.orglett.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Thioesters have been recognized as a class of powerful bifunctional reagents, namely, great donors of acyl and sulfide moieties. However, such application in value-added synthesis is still very limited to date. Herein, a nickel-catalyzed cross-coupling reaction system of aziridines with thioesters was developed under redox-neutral and mild conditions. This catalytic method provides an atom-economic route for the synthesis of diverse β-sulfanyl amide derivatives with wide substrate scope (43 examples), good functional group tolerance, and regioselectivity.
Collapse
Affiliation(s)
- Qian Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Xianmao Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Zhiyong Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemical R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| |
Collapse
|
2
|
Alberti M, Dariol A, Panza N, Abbiati G, Caselli A. Ammonium Zincates as Catalysts for the Microwave-Enhanced Synthesis of Symmetric Piperazines by Regioselective Opening of Aziridines. Chem Asian J 2024:e202400688. [PMID: 39136397 DOI: 10.1002/asia.202400688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Indexed: 10/19/2024]
Abstract
2,5-disubstituted N,N'-alkylpiperazines represent an interesting target in organic synthesis both for pharmaceutical or agrochemical applications and as a promising class of ligands in coordination chemistry. We report here a microwave-enhanced synthesis of these compounds starting from non-activated N-alkyl aziridines in the presence of catalytic amounts of simple ammonium metallates. A remarkable TOF of 2787.9 h-1 has been observed in the case of [TBA]2[ZnI4] as the catalyst (catalyst loading 0.1 mol %) and with an almost complete selectivity (up to 97 %) in favor of both diastereoisomers (meso and chiral form) of the target 2,5-disubstituted piperazines, obtained in 1 : 1 ratio. The two isomers are easily separated, because the meso form precipitates in pure from the reaction crude. A stereochemical investigation and the unprecedented isolation of 2,6-disubstituted N,N'-alkylpiperazines allowed us to shed light on the reaction mechanism.
Collapse
Affiliation(s)
- Matteo Alberti
- Department of Chemistry, Università degli Studi di Milano and CNR-SCITEC, Via Golgi 19, 20133, Milano, Italy
| | - Andrea Dariol
- Department of Chemistry, Università degli Studi di Milano and CNR-SCITEC, Via Golgi 19, 20133, Milano, Italy
| | - Nicola Panza
- Department of Chemistry, Università degli Studi di Milano and CNR-SCITEC, Via Golgi 19, 20133, Milano, Italy
| | - Giorgio Abbiati
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Alessandro Caselli
- Department of Chemistry, Università degli Studi di Milano and CNR-SCITEC, Via Golgi 19, 20133, Milano, Italy
| |
Collapse
|
3
|
Pan M, Shen Y, Li Y, Shen C, Li W. B 2(OH) 4-Mediated Reductive Ring-Opening of N-Tosyl Aziridines by Nitroarenes: A Green and Regioselective Access to Vicinal Diamines. J Org Chem 2024; 89:8656-8667. [PMID: 38831644 DOI: 10.1021/acs.joc.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The nucleophilic ring-opening of aziridine derivatives provides an important synthetic tool for the preparation of various β-functionalized amines. Amines as nucleophiles are employed to prepare synthetically useful 1,2-diamines in the presence of various catalysts or activators. Herein, the B2(OH)4-mediated reductive ring-opening transformation of N-tosyl aziridines by nitroarenes was developed. This aqueous protocol employed nitroarenes as cheap and readily available amino sources and proceeds under external catalyst-free conditions. Control experiments and DFT calculations pointed to the in situ reduction of nitroarenes to aryl amines via N-aryl boramidic acid (E) and an SN1-type ring-opening of N-tosylaziridines by the resultant aryl amines with high regioselectivity.
Collapse
Affiliation(s)
- Mengni Pan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yue Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
4
|
Luu T, Gristwood K, Knight JC, Jörg M. Click Chemistry: Reaction Rates and Their Suitability for Biomedical Applications. Bioconjug Chem 2024; 35:715-731. [PMID: 38775705 PMCID: PMC11191409 DOI: 10.1021/acs.bioconjchem.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
Click chemistry has become a commonly used synthetic method due to the simplicity, efficiency, and high selectivity of this class of chemical reactions. Since their initial discovery, further click chemistry methods have been identified and added to the toolbox of click chemistry reactions for biomedical applications. However, selecting the most suitable reaction for a specific application is often challenging, as multiple factors must be considered, including selectivity, reactivity, biocompatibility, and stability. Thus, this review provides an overview of the benefits and limitations of well-established click chemistry reactions with a particular focus on the importance of considering reaction rates, an often overlooked criterion with little available guidance. The importance of understanding each click chemistry reaction beyond simply the reaction speed is discussed comprehensively with reference to recent biomedical research which utilized click chemistry. This review aims to provide a practical resource for researchers to guide the selection of click chemistry classes for different biomedical applications.
Collapse
Affiliation(s)
- Tracey Luu
- Medicinal
Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Katie Gristwood
- School
of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.
| | - James C. Knight
- School
of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.
| | - Manuela Jörg
- Medicinal
Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School
of Natural & Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.
| |
Collapse
|
5
|
Hilton TA, Leach AG, McKay AP, Watson AJB. Accessing Rare α-Heterocyclic Aziridines via Brønsted Acid-catalyzed Michael Addition/Annulation: Scope, Limitations, and Mechanism. Chemistry 2024; 30:e202303993. [PMID: 38315627 DOI: 10.1002/chem.202303993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
We report an approach to the diastereoselective synthesis of 1,2-disubstituted heterocyclic aziridines. A Brønsted acid-catalyzed conjugate addition of anilines to trisubstituted heterocyclic chloroalkenes provides an intermediate 1,2-chloroamine. Diastereocontrol was found to vary significantly with solvent selection, with computational modelling confirming selective, spontaneous fragmentation in the presence of trace acids, proceeding through a pseudo-cyclic, protonated intermediate and transition state. These chloroamines can then be converted to the aziridine by treatment with LiHMDS with high stereochemical fidelity. This solvent-induced stereochemical enrichment thereby enables an efficient route to rare cis-aziridines with high dr. The scope, limitations, and mechanistic origins of selectivity are also presented.
Collapse
Affiliation(s)
- Timothy A Hilton
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U.K
| | - Andrew G Leach
- School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U.K
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U.K
| |
Collapse
|
6
|
Gross P, Im H, Laws D, Park B, Baik MH, Blakey SB. Enantioselective Aziridination of Unactivated Terminal Alkenes Using a Planar Chiral Rh(III) Indenyl Catalyst. J Am Chem Soc 2024; 146:1447-1454. [PMID: 38170978 PMCID: PMC10797617 DOI: 10.1021/jacs.3c10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Chiral aziridines are important structural motifs found in natural products and various target molecules. They serve as versatile building blocks for the synthesis of chiral amines. While advances in catalyst design have enabled robust methods for enantioselective aziridination of activated olefins, simple and abundant alkyl-substituted olefins pose a significant challenge. In this work, we introduce a novel approach utilizing a planar chiral rhodium indenyl catalyst to facilitate the enantioselective aziridination of unactivated alkenes. This transformation exhibits a remarkable degree of functional group tolerance and displays excellent chemoselectivity favoring unactivated alkenes over their activated counterparts, delivering a wide range of enantioenriched high-value chiral aziridines. Computational studies unveil a stepwise aziridination mechanism in which alkene migratory insertion plays a central role. This process results in the formation of a strained four-membered metallacycle and serves as both the enantio- and rate-determining steps in the overall reaction.
Collapse
Affiliation(s)
- Patrick Gross
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hoyoung Im
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - David Laws
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Bohyun Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Simon B. Blakey
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Munir R, Zahoor AF, Nazeer U, Saeed MA, Mansha A, Irfan A, Tariq MU. Gilman reagent toward the synthesis of natural products. RSC Adv 2023; 13:35172-35208. [PMID: 38053693 PMCID: PMC10694855 DOI: 10.1039/d3ra07359a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/19/2023] [Indexed: 12/07/2023] Open
Abstract
With the ever-increasing scope of organocuprates, a well-established Gilman reagent has been considered as an unprecedented synthetic tool in modern organic chemistry. The broad research profile of the Gilman reagent (R2CuLi in THF or Et2O) is owing to its propensity to carry out three kinds of reactions, i.e., epoxide ring opening reactions, 1,4-conjugate addition reactions, and SN2 reactions in a regioselective manner. This review examines the applications of Gilman reagent in the total synthesis of both abundant and scarce natural products of remarkable synthetic pharmaceutical profile reported since 2011. The presented insights will be of a vital roadmap to general organic synthesis and it will contribute to the development of new natural products and their analogues in future drug discovery.
Collapse
Affiliation(s)
- Ramsha Munir
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Muhammad Athar Saeed
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Muhammad Umair Tariq
- Department of Chemistry, Faculty of Natural Sciences, Forman Christian College University Lahore 54600 Pakistan
| |
Collapse
|
8
|
Liu J, Du YY, He YS, Liang Y, Liu SZ, Li YY, Cao YM. Parallel kinetic resolution of aziridines via chiral phosphoric acid-catalyzed apparent hydrolytic ring-opening. Chem Sci 2023; 14:12152-12159. [PMID: 37969581 PMCID: PMC10631200 DOI: 10.1039/d3sc03899h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Abstract
We report a chiral phosphoric acid catalyzed apparent hydrolytic ring-opening reaction of racemic aziridines in a regiodivergent parallel kinetic resolution manner. Harnessing the acyloxy-assisted strategy, the highly stereocontrolled nucleophilic ring-opening of aziridines with water is achieved. Different kinds of aziridines are applicable in the process, giving a variety of enantioenriched aromatic or aliphatic amino alcohols with up to 99% yields and up to >99.5 : 0.5 enantiomeric ratio. Preliminary mechanistic study as well as product elaborations were inducted as well.
Collapse
Affiliation(s)
- Juan Liu
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Ying Du
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yu-Shi He
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yan Liang
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Shang-Zhong Liu
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Yi Li
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| | - Yi-Ming Cao
- College of Science & China Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University Beijing 100193 China
| |
Collapse
|
9
|
Łowicki D, Przybylski P. Cascade synthetic strategies opening access to medicinal-relevant aliphatic 3- and 4-membered N-heterocyclic scaffolds. Eur J Med Chem 2022; 238:114438. [PMID: 35567964 DOI: 10.1016/j.ejmech.2022.114438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
Abstract
Cascade reactions are often 'employed' by nature to construct structurally diverse nitrogen-containing heterocycles in a highly stereoselective fashion, i.e., secondary metabolites important for pharmacy. Nitrogen-containing heterocycles of three- and four-membered rings, as standalone and bicyclic compounds, inhibit different enzymes and are pharmacophores of approved drugs or drug candidates considered in many therapies, e.g. anticancer, antibacterial or antiviral. Domino transformations are in most cases in line with modern green chemistry concepts due to atom economy, one-pot procedures often without use the protective groups, time-saving and at markedly lower costs than multistep transformations. The tandem approaches can help to obtain novel N-heterocyclic scaffolds, functionalized according to structural requirements of the target in cells, taking into account the nature of functional group and stereochemistry. On the other hand cascade strategies allow to modify small N-heterocyclic rings in a systematic way, which is beneficial for structure-activity relationship (SAR) analyses. This review is focused on the biological relevance of the N-heterocyclic scaffolds with smaller 3- and 4-membered rings among approved drugs and leading structures of drug candidates. The cascade synthetic strategies offering N-heterocyclic scaffolds, at relatively good yields and high stereoselectivity, are discussed here. The review covers mainly years from 2015 to 2021.
Collapse
Affiliation(s)
- Daniel Łowicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
10
|
Blatchford KM, Mize CJ, Roy S, Jenkins DM. Toward asymmetric aziridination with an iron complex supported by a D2-symmetric tetra-NHC. Dalton Trans 2022; 51:6153-6156. [PMID: 35380151 PMCID: PMC9019631 DOI: 10.1039/d2dt00772j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 02/02/2023]
Abstract
A neutral D2-symmetric macrocyclic tetra-N-heterocyclic carbene ligand was synthesized. The macrocycle was ligated to iron(II) via transmetalation from an isolated silver complex that has two conformers. The iron complex catalyzed the first stereospecific aziridination between aryl azides and aliphatic alkenes, albeit with low ee's.
Collapse
Affiliation(s)
- Kevin M Blatchford
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Carson J Mize
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Sharani Roy
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
11
|
Revealing 2-Dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as Sphingosine Kinase 2 inhibitors: some hints on the structural basis for selective inhibition. Bioorg Chem 2022; 121:105668. [DOI: 10.1016/j.bioorg.2022.105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
12
|
Cheviet T, Gonzales I, Peyrottes S. Synthesis of N-methylene phosphonate aziridines: reaction scope and mechanistic insights. NEW J CHEM 2022. [DOI: 10.1039/d2nj00595f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of N-carbamoyl aziridines by the diethyl phosphite anion affords either α-methylene-phosphonate or gem-bisphosphonate derivatives containing an aziridine motif depending on the nature of the base used.
Collapse
Affiliation(s)
- Thomas Cheviet
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), Univ. Montpellier, CNRS, ENSCM, Pole Chimie Balard Recherche, 1919, route de Mende, 34293 Montpellier, France
| | - Ilyana Gonzales
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), Univ. Montpellier, CNRS, ENSCM, Pole Chimie Balard Recherche, 1919, route de Mende, 34293 Montpellier, France
| | - Suzanne Peyrottes
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), Univ. Montpellier, CNRS, ENSCM, Pole Chimie Balard Recherche, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
13
|
Chen S, Zhu L, Zhang Z. Catalyst-free aziridine-based step-growth polymerization: a facile approach to optically active poly(sulfonamide amine)s and poly(sulfonamide dithiocarbamate)s. Polym Chem 2022. [DOI: 10.1039/d2py00771a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Step-growth polymerization of chiral bis(N-sulfonyl aziridine)s with diamines or bis(dialkyldithiocarbamate) in the absence of a catalyst allows the facile synthesis of optically active polysulfonamide derivatives.
Collapse
Affiliation(s)
- Shibin Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
14
|
Sakla AP, Panda B, Laxmikeshav K, Soni JP, Bhandari S, Godugu C, Shankaraiah N. Dithiocarbamation of spiro-aziridine oxindoles: a facile access to C3-functionalised 3-thiooxindoles as apoptosis inducing agents. Org Biomol Chem 2021; 19:10622-10634. [PMID: 34870311 DOI: 10.1039/d1ob02102h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report the first dithiocarbamation of spiro-aziridine oxindoles involving regiospecific ring-opening by using in situ generated nucleophilic dithiocarbamates as an instant source of sulfur. This approach afforded C3-functionalised-3-thiooxindoles in good to excellent yields with a wide substrate scope under catalyst-free and mild reaction conditions. These compounds were screened for their anticancer activity against a panel of human cancer cell lines, wherein compound 3u exhibited significant cytotoxic activity against human lung cancer cells with an IC50 value of 4.31 ± 1.88 μM. Phase contrast microscopy as well as different staining assays such as acridine orange/ethidium bromide (AO/EB), DAPI and DCFDA demonstrated the induction of apoptosis in A549 lung cancer cells after treatment with compound 3u. In addition, the clonogenic assay and migration assay demonstrated the ability of compound 3u to inhibit colony formation and cell migration, respectively, in A549 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| | - Biswajit Panda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India
| | - Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| | - Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| | - Sonal Bhandari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| |
Collapse
|
15
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
16
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
17
|
Van Hecke K, Benton TR, Casper M, Mauldin D, Drake B, Morgan JB. Palladium-Catalyzed, Enantioselective Desymmetrization of N-Acylaziridines with Indoles. Org Lett 2021; 23:7916-7920. [PMID: 34609884 PMCID: PMC9022218 DOI: 10.1021/acs.orglett.1c02914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ring opening reactions of meso-aziridines generate chiral amine derivatives where the control of stereochemistry is possible through enantioselective catalysis. We report the use of a diphosphine-palladium(II) catalyst for the highly enantioselective desymmetrization of N-acylaziridines with indoles. The β-tryptamine products are isolated in moderate to high yield across a range of indole and aziridine substitution patterns. The synthetic utility of β-tryptamine products is demonstrated by conversion to the brominated pyrroloindoline derivative.
Collapse
Affiliation(s)
- Kinney Van Hecke
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Tyler R Benton
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Michael Casper
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Dustin Mauldin
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Brandon Drake
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Jeremy B Morgan
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| |
Collapse
|
18
|
Sheoran A, Kaur J, Agarwal J, Singhal S. Ring Opening of Epoxides and Aziridines with Benzotriazoles Using Magnetically Retrievable Graphene Based (CoFe@rGO) Nanohybrid. ChemistrySelect 2021. [DOI: 10.1002/slct.202101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ankush Sheoran
- Department of Chemistry & Centre of Advanced Studies in Chemistry Panjab University Chandigarh India- 160014
| | - Jaspreet Kaur
- Energy Research Centre Panjab University Chandigarh India- 160014
| | - Jyoti Agarwal
- Department of Chemistry & Centre of Advanced Studies in Chemistry Panjab University Chandigarh India- 160014
| | - Sonal Singhal
- Department of Chemistry & Centre of Advanced Studies in Chemistry Panjab University Chandigarh India- 160014
| |
Collapse
|
19
|
Verdoliva V, Digilio G, Saviano M, De Luca S. Microwave Heating Promotes the S-Alkylation of Aziridine Catalyzed by Molecular Sieves: A Post-Synthetic Approach to Lanthionine-Containing Peptides. Molecules 2021; 26:molecules26206135. [PMID: 34684715 PMCID: PMC8538954 DOI: 10.3390/molecules26206135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Aziridine derivatives involved in nucleophilic ring-opening reactions have attracted great interest, since they allow the preparation of biologically active molecules. A chemoselective and mild procedure to convert a peptide cysteine residue into lanthionine via S-alkylation on aziridine substrates is presented in this paper. The procedure relies on a post-synthetic protocol promoted by molecular sieves to prepare lanthionine-containing peptides and is assisted by microwave irradiation. In addition, it represents a valuable alternative to the stepwise approach, in which the lanthionine precursor is incorporated into peptides as a building block.
Collapse
Affiliation(s)
- Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Universitaà del Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy;
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 70126 Bari, Italy;
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy;
- Correspondence: ; Tel.: +39-081-253-4514
| |
Collapse
|
20
|
Xu S, Hirano K, Miura M. Nickel-Catalyzed Regio- and Stereospecific C-H Coupling of Benzamides with Aziridines. Org Lett 2021; 23:5471-5475. [PMID: 34197130 DOI: 10.1021/acs.orglett.1c01821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A nickel-catalyzed C-H coupling of 8-aminoquinoline-derived benzamides with aryl- and alkyl-substituted aziridines has been disclosed. The current strategy provides direct access to benzolactams by the C-H alkylation-intramolecular amidation cascade event with the concomitant removal of the aminoquinoline auxiliary. The regioselectivity of ring opening of aziridines can be controlled by the substituents. The reaction with chiral aziridines proceeds with inversion of configuration, thus suggesting an SN2-type nucleophilic ring-opening pathway.
Collapse
Affiliation(s)
- Shibo Xu
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Rhee H, Ranjith J, Byeon H, Ha H, Yang JW. Preparation and Utilization of Contiguous Bisaziridines as Chiral Building Blocks. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyong‐Jin Rhee
- Department of Chemistry Hankuk University of Foreign Studies Yongin 17035 Republic of Korea
| | - Jala Ranjith
- Department of Chemistry Hankuk University of Foreign Studies Yongin 17035 Republic of Korea
| | - Huimyoung Byeon
- Department of Energy Science Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hyun‐Joon Ha
- Department of Chemistry Hankuk University of Foreign Studies Yongin 17035 Republic of Korea
| | - Jung Woon Yang
- Department of Energy Science Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
22
|
Pineschi M. Boron Reagents and Catalysts for the Functionalization of Strained Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mauro Pineschi
- Department of Pharmacy University of Pisa Via Bonanno 33 56126 Pisa Italy Tel
| |
Collapse
|
23
|
Synthetic Applications of Aziridinium Ions. Molecules 2021; 26:molecules26061774. [PMID: 33809951 PMCID: PMC8004105 DOI: 10.3390/molecules26061774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Nonactivated aziridine with an electron-donating group at the ring nitrogen should be activated to an aziridinium ion prior to being converted to cyclic and acyclic nitrogen-containing molecules. This review describes ways to generate aziridinium ions and their utilization for synthetic purposes. Specifically, the intra- and intermolecular formation of aziridinium ions with proper electrophiles are classified, and their regio- and stereoselective transformations with nucleophiles are described on the basis of recent developments.
Collapse
|
24
|
Alkylative Aziridine Ring-Opening Reactions. Molecules 2021; 26:molecules26061703. [PMID: 33803771 PMCID: PMC8003214 DOI: 10.3390/molecules26061703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the highly strained three-membered aziridine ring was successfully activated as the aziridinium ion by alkylation of the ring nitrogen with a methyl, ethyl or allyl group, which was followed by ring opening with external nucleophiles such as acetate and azide. Such alkylative aziridine ring opening provides an easy route for the synthesis of various N-alkylated amine-containing molecules with concomitant introduction of an external nucleophile at either its α- or β-position.
Collapse
|
25
|
Cheviet T, Peyrottes S. Synthesis of Aminomethylene- gem-bisphosphonates Containing an Aziridine Motif: Studies of the Reaction Scope and Insight into the Mechanism. J Org Chem 2021; 86:3107-3119. [PMID: 33476157 DOI: 10.1021/acs.joc.0c02434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A broad range of N-carbamoylaziridines were obtained and then treated by the diethyl phosphonate anion to afford α-methylene-gem-bisphosphonate aziridines. Study of the reaction's scope and additional experiments indicates that the transformation proceeds via a new mechanism involving the chelation of lithium ion. This last step is crucial for the reaction to occur and disfavors the aziridine ring-opening. A phosphonate-phosphate rearrangement from a α-hydroxybisphosphonate aziridine intermediate is also proposed for the first time. This reaction provides a simple and convenient method for the synthesis of a highly functionalized phosphonylated aziridine motif.
Collapse
Affiliation(s)
- Thomas Cheviet
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Univ. Montpellier, Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier, France
| | - Suzanne Peyrottes
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Univ. Montpellier, Campus Triolet, cc1705, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
26
|
Kalník M, Zajičková M, Kóňa J, Šesták S, Moncoľ J, Koóš M, Bella M. Synthesis of hydroxymethyl analogues of mannostatin A and their evaluation as inhibitors of GH38 α-mannosidases. NEW J CHEM 2021. [DOI: 10.1039/d1nj02351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analogues of mannostatin A were synthesised and evaluated as inhibitors of GH38 α-mannosidases. Different regioselectivity of aziridine opening with sodium methanethiolate was observed and investigated by quantum mechanics calculations.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Mária Zajičková
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Juraj Kóňa
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Sergej Šesták
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry
- Faculty of Chemical and Food Technology
- Radlinského 9
- SK-812 37 Bratislava
- Slovakia
| | - Miroslav Koóš
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Maroš Bella
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| |
Collapse
|
27
|
Abstract
Multiheteroatom-containing small-sized cyclic molecules such as 2-
iminothiazolidines are often found to possess beneficial pharmacological properties. In this
review article, the biological significance of 2-iminothiazolidines is discussed and the literature
reports published in the last 15 years spanning from 2006 to 2020 describing various
preparative routes to access 2-iminothiazolidine derivatives have been categorically and
chronologically described. The notable synthetic methods discussed here involve ringexpansion
transformations of nonactivated and activated aziridines, thiiranes, epoxides, and
other miscellaneous reactions.
Collapse
Affiliation(s)
- Aditya Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016, Kanpur, Uttar Pradesh, India
| |
Collapse
|
28
|
A continuous flow bromodimethylsulfonium bromide generator: application to the synthesis of 2-arylaziridines from styrenes. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00125-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Computational study on the mechanism of the reaction of benzenesulfonyl azides with oxabicyclic alkenes. J Mol Model 2020; 26:314. [PMID: 33098013 DOI: 10.1007/s00894-020-04582-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
The reaction of benzenesulfonyl azides with oxabicyclic alkenes to form aziridines could either proceed via initial [3 + 2] cycloaddition to form triazoline intermediates which then leads to aziridines, or via initial dinitrogen cleavage of the benzenesulfonyl azide to afford a nitrene intermediate followed by addition of this nitrene species across the olefinic C-C bond of the oxabicyclic alkene. Calculations at the DFT M06-2X/6-311G(d,p) level indicate that the initial [3 + 2] cycloaddition reaction of benzenesulfonyl azide and oxabicyclic alkene has barriers of 15.0 kcal/mol (endo) and 10.3 kcal/mol (exo) and rate constants of 5.23 × 103 s-1 (endo) and 3.86 × 106 s-1 (exo) whereas the pathway involving initial formation of nitrene species has a high activation barrier of 39.2 kcal/mol and rate constant of 8.92 × 10-12 s-1, indicating that the reaction will go through the former route to form an exo triazoline intermediate. The exo triazoline can either undergo a concerted C-C, N-N bond cleavage to form a ring-opened intermediate, a reaction that has a barrier of 23.4 kcal/mol, followed by dinitrogen extrusion and C-C, C-N bond regeneration with barriers of 29.1 and 23.5 kcal/mol respectively to form endo aziridines, or it can undergo direct nitrogen extrusion to form the exo product, a reaction with a barrier of 38.3 kcal/mol. Since the rate-determining step of the former route is 9.2 kcal/mol more favored than the latter, the former route rate is favored. The rate constants of the rate-determining steps are 1.30 × 10-5 s-1 (endo) and 3.16 × 10-11 s-1 (exo), indicating that endo aziridine would be formed as the major product and this is in conformity with the experimental observations of Chen et al. (J. Org. Chem. 18:11863-11872, 2019). The position of substituents on the benzene group of the benzenesulfonyl azide affects the endo/exo diastereoselectivity.Graphical abstract.
Collapse
|
30
|
Gaston JJ, McCosker PM, Yu H, Keller PA. Predicting phosphirane air stability using density functional theory. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jayden J. Gaston
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Illawarra Health and Medical Research Institute University of Wollongong Wollongong New South Wales Australia
| | - Patrick M. McCosker
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Illawarra Health and Medical Research Institute University of Wollongong Wollongong New South Wales Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Illawarra Health and Medical Research Institute University of Wollongong Wollongong New South Wales Australia
| | - Paul A. Keller
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Illawarra Health and Medical Research Institute University of Wollongong Wollongong New South Wales Australia
| |
Collapse
|
31
|
Haider V, Kreuzer V, Tiffner M, Spingler B, Waser M. Ammonium Salt-Catalyzed Ring-Opening of Aryl-Aziridines with β-Keto Esters. European J Org Chem 2020; 2020:5173-5177. [PMID: 32982577 PMCID: PMC7508174 DOI: 10.1002/ejoc.202000916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 02/03/2023]
Abstract
We herein report an ammonium salt-catalyzed protocol for the regioselective ring opening of aryl-aziridines with β-keto esters. The reaction gives access to a variety of highly functionalized target molecules with two consecutive stereo-genic centers and can be rendered enantioselective (up to e.r. = 91:9) by using bifunctional chiral ammonium salt catalysts.
Collapse
Affiliation(s)
- Victoria Haider
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Viktoria Kreuzer
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Maximilian Tiffner
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
32
|
Talukdar R. Synthetically important ring opening reactions by alkoxybenzenes and alkoxynaphthalenes. RSC Adv 2020; 10:31363-31376. [PMID: 35520658 PMCID: PMC9056427 DOI: 10.1039/d0ra05111j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Alkoxybenzenes and alkoxynaphthalenes, as nucleophiles, have drawn great attention from organic chemists over the decades. Due to their high ring strain, those particular classes of molecules are often used in synthesis by utilizing their properties to undergo facile Friedel-Crafts alkylations. Different isomeric and low or densely substituted alkoxybenzenes are used for synthesis according to the structure of the target molecule. Isomeric methoxybenzenes, are the most commonly used molecule in this regard. This review aims to comprehensively cover the instances of different alkoxy-benzenes/naphthalenes used as nucleophiles for ring opening.
Collapse
Affiliation(s)
- Ranadeep Talukdar
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow-226014 India
| |
Collapse
|
33
|
Saeidian H, Barfinejad E, Vessally E. Effect of aromaticity and ring strain on proton affinity of aziridine and amidine skeletons: a DFT study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01899-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Soni JP, Chemitikanti KS, Joshi SV, Shankaraiah N. The microwave-assisted syntheses and applications of non-fused single-nitrogen-containing heterocycles. Org Biomol Chem 2020; 18:9737-9761. [PMID: 33211792 DOI: 10.1039/d0ob01779e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microwave technology has emerged as a great tool for the efficient synthesis of organic compounds and it provides opportunities for chemists to achieve chemical transformations that tend to be challenging using classical approaches. Additionally, N-heterocycles are well-known for their medicinal/biological significance, along with their applications as excellent building blocks in chemical synthesis. The dominance of N-heterocycles in drug molecules and other pharmacological agents makes them attractive scaffolds, which encourages chemists to develop a wide range of strategies towards the greener synthesis and functionalization of these heterocycles. In this regard, we have collated and discussed literature relating to the microwave-assisted synthesis and the modification of non-(benzo)fused single-nitrogen-containing N-heterocycles from the past decade. The role of the microwave technique and its benefits over the conventional approach have also been emphasized in terms of overall reaction efficiency, reaction time, yield, reduced side-product generation, neat and clean reactions, chemo-/regio-/enantio-selectivity, and the use of mild reagents/reaction conditions to achieve the objectives of green and sustainable chemistry.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| | | | | | | |
Collapse
|
35
|
Borrel J, Pisella G, Waser J. Copper-Catalyzed Oxyalkynylation of C–S Bonds in Thiiranes and Thiethanes with Hypervalent Iodine Reagents. Org Lett 2019; 22:422-427. [DOI: 10.1021/acs.orglett.9b04157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Guillaume Pisella
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Azek E, Spitz C, Ernzerhof M, Lebel H. A Mechanistic Study of the Stereochemical Outcomes of Rhodium‐Catalysed Styrene Aziridinations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Emna Azek
- Département de Chimie and Centre in Green Chemistry and Catalysis (CGCC)Université de Montréal C.P. 6128, Succursale Centre-ville Montréal, Québec Canada H3C 3J7
| | - Cédric Spitz
- Département de Chimie and Centre in Green Chemistry and Catalysis (CGCC)Université de Montréal C.P. 6128, Succursale Centre-ville Montréal, Québec Canada H3C 3J7
| | - Matthias Ernzerhof
- Département de Chimie and Centre in Green Chemistry and Catalysis (CGCC)Université de Montréal C.P. 6128, Succursale Centre-ville Montréal, Québec Canada H3C 3J7
| | - Hélène Lebel
- Département de Chimie and Centre in Green Chemistry and Catalysis (CGCC)Université de Montréal C.P. 6128, Succursale Centre-ville Montréal, Québec Canada H3C 3J7
| |
Collapse
|
37
|
Polat‐Cakir S, Beksultanova N, Dogan Ö. Synthesis of Functionalized Novel
α
‐Amino‐
β
‐alkoxyphosphonates through Regioselective Ring Opening of Aziridine‐2‐phosphonates. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sidika Polat‐Cakir
- Department of Chemical EngineeringÇanakkale Onsekiz Mart University TR-17100 Çanakkale Turkey
| | | | - Özdemir Dogan
- Department of ChemistryMiddle East Technical University TR-06800 Ankara Turkey
| |
Collapse
|
38
|
Zhang F, Zhang Y, Tan Q, Lin L, Liu X, Feng X. Kinetic Resolution of Aziridines via Catalytic Asymmetric Ring-Opening Reaction with Mercaptobenzothiazoles. Org Lett 2019; 21:5928-5932. [PMID: 31334664 DOI: 10.1021/acs.orglett.9b02058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient kinetic resolution of racemic 2-acyl-3-aryl-N-tosylaziridines is achieved through a chiral Lewis acid promoted ring-opening reaction with 2-mercaptobenzothiazoles as the nucleophiles. The chiral N,N'-dioxide-lanthanum complex as catalyst and the 2-mercaptobenzothiazoles as active sulfur nucleophiles are the keys to the success of the reaction. A variety of enantioenriched β-amino thioethers and aziridines are obtained in good yields with good ee values.
Collapse
Affiliation(s)
- Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Yu Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Qingfa Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , China
| |
Collapse
|
39
|
Głowacka IE, Trocha A, Wróblewski AE, Piotrowska DG. N-(1-Phenylethyl)aziridine-2-carboxylate esters in the synthesis of biologically relevant compounds. Beilstein J Org Chem 2019; 15:1722-1757. [PMID: 31435446 PMCID: PMC6664392 DOI: 10.3762/bjoc.15.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Since Garner’s aldehyde has several drawbacks, first of all is prone to racemization, alternative three-carbon chirons would be of great value in enantioselective syntheses of natural compounds and/or drugs. This review article summarizes applications of N-(1-phenylethyl)aziridine-2-carboxylates, -carbaldehydes and -methanols in syntheses of approved drugs and potential medications as well as of natural products mostly alkaloids but also sphingoids and ceramides and their 1- and 3-deoxy analogues and several hydroxy amino acids and their precursors. Designed strategies provided new procedures to several drugs and alternative approaches to natural products and proved efficiency of a 2-substituted N-(1-phenylethyl)aziridine framework as chiron bearing a chiral auxiliary.
Collapse
Affiliation(s)
- Iwona E Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Aleksandra Trocha
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Andrzej E Wróblewski
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Dorota G Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
40
|
Bartoccini F, Venturi S, Retini M, Mari M, Piersanti G. Total Synthesis of (−)-Clavicipitic Acid via γ,γ-Dimethylallyltryptophan (DMAT) and Chemoselective C–H Hydroxylation. J Org Chem 2019; 84:8027-8034. [DOI: 10.1021/acs.joc.9b00879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Silvia Venturi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| |
Collapse
|
41
|
Stereoselective Multicomponent Reactions in the Synthesis or Transformations of Epoxides and Aziridines. Molecules 2019; 24:molecules24030630. [PMID: 30754666 PMCID: PMC6384726 DOI: 10.3390/molecules24030630] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 01/14/2023] Open
Abstract
Small ring heterocycles, such as epoxides and aziridines, are present in several natural products and are also highly versatile building blocks, frequently involved in the synthesis of numerous bioactive products and pharmaceuticals. Because of the potential for increased efficiency and selectivity, along with the advantages of environmentally benign synthetic procedures, multicomponent reactions (MCRs) have been explored in the synthesis and ring opening of these heterocyclic units. In this review, the recent advances in MCRs involving the synthesis and applications of epoxides and aziridines to the preparation of other heterocycles are discussed emphasizing the stereoselectivity of the reactions.
Collapse
|
42
|
Singh GS. Advances in synthesis and chemistry of aziridines. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Yoshida M, Hirokane T, Kawakami A, Matsumoto K. Diastereoselective Synthesis of 5-Iodoalkenyl-2-oxazolines by Electrophilic Cyclization of Allenyl Amides. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Kang D, Kim T, Lee H, Hong S. Regiodivergent Ring-Opening Cross-Coupling of Vinyl Aziridines with Phosphorus Nucleophiles: Access to Phosphorus-Containing Amino Acid Derivatives. Org Lett 2018; 20:7571-7575. [DOI: 10.1021/acs.orglett.8b03309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dahye Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Taehwan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hyunpyo Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
45
|
Yi R, Li X, Wan B. Ring-opening and cyclization of aziridines with aryl azides: metal-free synthesis of 6-(triflyloxy)quinolines. Org Chem Front 2018. [DOI: 10.1039/c8qo00984h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A metal-free synthesis of 6-(triflyloxy)quinolines has been developed via the ring-opening and cyclization of 2-aryl-1-tosylaziridines with 2-azidobenzaldehydes in the presence of TfOH.
Collapse
Affiliation(s)
- Ruxia Yi
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Xincheng Li
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Boshun Wan
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|