1
|
Nguyen TTT, Tran VA, Tran TH, Ho VD, Do TH, Truong QK, Pham MQ, Le THV. Megastigmanes isolated from Boehmeria nivea leaves and their immunomodulatory effect on IL-1β and IL-10 production in RAW264.7 macrophages. RSC Adv 2025; 15:11549-11561. [PMID: 40230633 PMCID: PMC11995158 DOI: 10.1039/d4ra06545j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
With the aim of isolating immunomodulatory compounds from the n-butanol extract of Boehmeria nivea leaves, nine megastigmane compounds were identified. Among these, the structure of the new compound 1, namely, "boehmegaside A", was established using NMR and HR-ESI-MS, and its absolute configurations were established through ECD calculations and DP4+ analysis using DFT-NMR chemical shift calculations. Furthermore, eight of these compounds were discovered for the first time in the Boehmeria genus, marking this the first report on megastigmane compounds isolated from this genus. Regarding their immunomodulatory activity, the isolated megastigmane compounds 3, 2, and 6 exhibited pro-inflammatory cytokine IL-1β secretion inhibitory activity. Compounds 3 and 6 significantly increased anti-inflammatory cytokine IL-10 secretion in LPS-activated RAW264.7 cells. Furthermore, the study on the mechanism of the immunomodulatory and other biological activities of megastigmane compounds through molecular docking simulations revealed that the planar structures of 3, 2, and 6 were critical in their ability to directly suppress TLR4 signalling. Instead, they attached to a nearby smooth area in TLR4. This interference likely disrupted the ability of TLR4 and MD-2 to form their primary contact interface and recognize LPS. These findings highlight the significant role of TLR4 in inflammation and immunity, indicating that these megastigmane compounds may be beneficial in treating various inflammatory disorders associated with immunological issues.
Collapse
Affiliation(s)
- Thi Thu Thao Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
- University of Health Sciences, Vietnam National University Ho Chi Minh City Vietnam
| | - Vy Anh Tran
- Department of Material Science, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Thi Hien Tran
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University Box 117 Lund SE-221 00 Sweden
| | - Viet Duc Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University 06 Ngo Quyen Hue City Vietnam
| | - Thi Ha Do
- Department of Medical Plant Chemistry, National Institute of Medical Materials (NIMM) Hanoi 11022 Vietnam
| | - Quoc Ky Truong
- Faculty of Pharmacy, Pham Ngoc Thach University of Medicine Ho Chi Minh City Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Thi Hong Van Le
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| |
Collapse
|
2
|
Nguyen LTH, Vu DH, Pham MQ, Ngo QA, Vo NB. Design, synthesis, anti-inflammatory evaluation, and molecular docking studies of novel quinazoline-4(3 H)-one-2-carbothioamide derivatives. RSC Adv 2025; 15:2850-2861. [PMID: 39877699 PMCID: PMC11774271 DOI: 10.1039/d4ra09094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
In this paper, a series of novel quinazoline-4(3H)-one-2-carbothioamide derivatives (8a-p) were designed and synthesized via the Wilgerodt-Kindler reaction between 2-methylquinazoline-4-one 10 and amines using S8/DMSO as the oxidizing system. Their characteristics were confirmed by IR, NMR, HRMS spectra, and their melting point. These novel derivatives (8a-p) were evaluated for their anti-inflammatory activity by inhibiting NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells. Compounds 8d (IC50 = 2.99 μM), 8g (IC50 = 3.27 μM), and 8k (IC50 = 1.12 μM) exhibited potent inhibition of NO production compared to the standard drug dexamethasone (IC50 = 14.20 μM). Compound 8a (IC50 = 13.44 μM) exhibited NO inhibition comparable to dexamethasone. Structure-activity relationship (SAR) studies indicated that the presence of both the thioamide functional group (NH-C[double bond, length as m-dash]S) directly attached to the phenyl ring containing halogen substituents (4-Cl, 8d), (4-Br, 8g) and (4-CF3, 8k), is responsible for the potent anti-inflammatory activity of these novel quinazolinone derivatives. Computational modeling studies revealed that compounds 8d, 8g, and 8k are potent inhibitors of TLR4 signaling through the formation of hydrophobic interactions and are stabilized by hydrogen bonds. Replacing the thioamide (8k) with an amide (8q) resulted in an 83-fold decrease in NO inhibitory potency. This highlights the important role of H-bonding involving the thioamide group. The structural shape difference results in favorable interactions of quinazolinones containing thioamide linkers compared to amide linkers to the target receptor. Furthermore, the ADMET profiles and physicochemical properties of these three lead compounds were predicted to meet the criteria for drug-like properties. Therefore, these compounds may be potential candidates for the treatment of many inflammatory diseases associated with immune disorders.
Collapse
Affiliation(s)
- Le Thanh Hang Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology 1 Dai Co Viet Street Hanoi Vietnam
| | - Dinh Hoang Vu
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology 1 Dai Co Viet Street Hanoi Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry (INPC), Vietnam Academy of Science and Technology (VAST) Hanoi Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST) Hanoi Vietnam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Ngoc Binh Vo
- Institute of Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
| |
Collapse
|
3
|
Fantacuzzi M, Carradori S, Giampietro L, Maccallini C, De Filippis B, Amoroso R, Ammazzalorso A. A novel life for antitumor combretastatins: Recent developments of hybrids, prodrugs, combination therapies, and antibody-drug conjugates. Eur J Med Chem 2025; 281:117021. [PMID: 39500065 DOI: 10.1016/j.ejmech.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 12/02/2024]
Abstract
Since their discovery from natural sources, the potent cytotoxic effects of combretastatins were widely studied for the application in antitumor therapy. However, major pharmacokinetic issues as low water solubility and chemical instability of the double bond configuration prevented their use in therapy. A lot of efforts have been directed towards the search of novel strategies, allowing a safer use of combretastatins as anticancer agents. This review analyses the recent landscape in combretastatin research, characterized by the identification of hybrids, prodrugs, and novel combination treatments. Interestingly, the potent cytotoxic agent combretastatin A4 (CA4) was recently proposed as payload in the construction of novel antibody-drug conjugates (ADCs), allowing an efficient targeting of the cytotoxic agent to specific tumors.
Collapse
Affiliation(s)
- Marialuigia Fantacuzzi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Letizia Giampietro
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandra Ammazzalorso
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
4
|
Tran MT, Do TQ, Phi TD, Nguyen TTH, Litaudon M, Tran TH, Nguyen TL, Pham VC, Doan TMH. New Cytotoxic Sesquiterpene Lactones from the Leaves of Tithonia Diversifolia and their Apoptosis Effect Evaluation in KB Cancer Cells. Chem Biodivers 2024; 21:e202401934. [PMID: 39187695 DOI: 10.1002/cbdv.202401934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
From the leaves of Tithonia diversifolia, nine sesquiterpenoids (1-9), including two new ones (tagitinin J (1) and tagitinin K (2)) were isolated and structurally determined. Their chemical structures were elucidated by extensive analyses of the HRESIMS and NMR spectral data, as well as comparison with the literature. All of the isolated compounds (except compounds 7-9) significantly exhibited cytotoxic activity against four human cancer cell lines (KB, HepG2, A549 and MCF7), with IC50 values ranging from 0.29-17.0 μM, which were in the same range as the positive control ellipticine or even lower. Further, the apoptosis induction effects of two new compounds 1 and 2 were also investigated and reported. While compound 2 did not induce the apoptosis in KB cells at test concentrations, compound 1 was found to possess anti-proliferative activity through concentration-dependently inducing cell cycle arrest at S phase, morphological changes, activation of caspase 3, and an increase in the early-stage apoptosis of KB cells at a concentration of 7.26 μM.
Collapse
Affiliation(s)
- Minh The Tran
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
- Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, 11600, Hanoi, Vietnam
| | - Thi Quynh Do
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| | - Thi Dao Phi
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| | - Thi Thu Ha Nguyen
- Institute of Chemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| | - Marc Litaudon
- Université Paris-Saclay, CNRS, Institut de Chimie des substances Naturelles, 91198, Gif-sur-Yvette, France
| | - Thu Huong Tran
- Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, 11600, Hanoi, Vietnam
| | - Thuy Linh Nguyen
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| | - Van Cuong Pham
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| | - Thi Mai Huong Doan
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 11300, Hanoi, Vietnam
| |
Collapse
|
5
|
Ma M. Current scenario of pyrazole hybrids with anti-breast cancer therapeutic applications. Arch Pharm (Weinheim) 2024; 357:e2400344. [PMID: 38943440 DOI: 10.1002/ardp.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Breast cancer stands as the leading cause of cancer-related deaths among women globally, but current therapy is restricted to the serious adverse effects and multidrug resistance, necessitating the exploration of novel, safe, and efficient anti-breast cancer chemotherapeutic agents. Pyrazoles exhibit excellent potential for utilization as effective anti-breast cancer agents due to their ability to act on various biological targets. Particularly, pyrazole hybrids demonstrated the advantage of targeting multiple pathways, and some of them, which are exemplified by larotrectinib (pyrazolo[1,5-a]pyrimidine hybrid), can be applied for breast cancer therapy. Thus, pyrazole hybrids hold great promise as useful therapeutic interventions for breast cancer. The aim of this review is to summarize the current scenario of pyrazole hybrids with in vitro and/or in vivo anti-breast cancer potential, along with the modes of action and structure-activity relationships, covering articles published from 2020 to the present, to streamline the development of rational, effective and safe anti-breast cancer candidates.
Collapse
Affiliation(s)
- Mengyu Ma
- Department of Pharmaceutical Engineering, School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
6
|
Zhao C, Liu Y, Cui Z. Recent development of azole-sulfonamide hybrids with the anticancer potential. Future Med Chem 2024; 16:1267-1281. [PMID: 38989985 PMCID: PMC11244697 DOI: 10.1080/17568919.2024.2351291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Cancer exhibits heterogeneity that enables adaptability and remains grand challenges for effective treatment. Chemotherapy is a validated and critically important strategy for the treatment of cancer, but the emergence of multidrug resistance which may lead to recurrence of disease or even death is a major hurdle for successful chemotherapy. Azoles and sulfonamides are important anticancer pharmacophores, and azole-sulfonamide hybrids have the potential to simultaneously act on dual/multiple targets in cancer cells, holding great promise to overcome drug resistance. This review outlines the current scenario of azole-sulfonamide hybrids with the anticancer potential, and the structure-activity relationships as well as mechanisms of action are also discussed, covering articles published from 2020 onward.
Collapse
Affiliation(s)
- Chenyuan Zhao
- Huludao Central Hospital, Huludao, 125000, Liaoning, China
| | - Yang Liu
- Huludao Central Hospital, Huludao, 125000, Liaoning, China
| | - Zhuo Cui
- Huludao Central Hospital, Huludao, 125000, Liaoning, China
| |
Collapse
|
7
|
Kassab AE, Gedawy EM. Recent Advancements in Refashioning of NSAIDs and their Derivatives as Anticancer Candidates. Curr Pharm Des 2024; 30:1217-1239. [PMID: 38584541 DOI: 10.2174/0113816128304230240327044201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 04/09/2024]
Abstract
Inflammation is critical to the formation and development of tumors and is closely associated with cancer. Therefore, addressing inflammation and the mediators that contribute to the inflammatory process may be a useful strategy for both cancer prevention and treatment. Tumor predisposition can be attributed to inflammation. It has been demonstrated that NSAIDs can modify the tumor microenvironment by enhancing apoptosis and chemosensitivity and reducing cell migration. There has been a recent rise in interest in drug repositioning or repurposing because the development of innovative medications is expensive, timeconsuming, and presents a considerable obstacle to drug discovery. Repurposing drugs is crucial for the quicker and less expensive development of anticancer medicines, according to an increasing amount of research. This review summarizes the antiproliferative activity of derivatives of NSAIDs such as Diclofenac, Etodolac, Celecoxib, Ibuprofen, Tolmetin, and Sulindac, published between 2017 and 2023. Their mechanism of action and structural activity relationships (SARs) were also discussed to set the path for potential future repositioning of NSAIDs for clinical deployment in the treatment of cancer.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| |
Collapse
|
8
|
Luyen ND, Huong LM, Ha NTT, Tra NT, Anh LTT, Tuyen NV, Posta K, Son NT, Pham-The H. Chemical Profile and Biological Activities of Fungal Strains Isolated from Piper nigrum Roots: Experimental and Computational Approaches. Chem Biodivers 2023; 20:e202200456. [PMID: 36564341 DOI: 10.1002/cbdv.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
The current report describes the chemical investigation and biological activity of extracts produced by three fungal strains Fusarium oxysporum, Penicillium simplicissimum, and Fusarium proliferatum isolated from the roots of Piper nigrum L. growing in Vietnam. These fungi were namely determined by morphological and DNA analyses. GC/MS identification revealed that the EtOAc extracts of these fungi were associated with the presence of saturated and unsaturated fatty acids. These EtOAc extracts showed cytotoxicity towards cancer cell lines HepG2, inhibited various microbacterial organisms, especially fungus Aspergillus niger and yeast Candida albicans (the MIC values of 50-100 μg/mL). In α-glucosidase inhibitory assay, they induced the IC50 values of 1.00-2.53 μg/mL were better than positive control acarbose (169.80 μg/mL). The EtOAc extract of F. oxysporum also showed strong anti-inflammatory activity against NO production and PGE-2 level. Four major compounds linoleic acid (37.346 %), oleic acid (27.520 %), palmitic acid (25.547 %), and stearic acid (7.030 %) from the EtOAc extract of F. oxysporum were selective in molecular docking study, by which linoleic and oleic acids showed higher binding affinity towards α-glucosidase than palmitic and stearic acids. In subsequent docking assay with inducible nitric oxide synthase (iNOS), palmitic acid, oleic acid and linoleic acid could be moderate inhibitors.
Collapse
Affiliation(s)
- Nguyen Dinh Luyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Le Mai Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Nguyen Thi Thu Ha
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Nguyen Thanh Tra
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Le Thi Tu Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Katalin Posta
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Pater str 1., Godollo, H-2103, Hungary
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Hai Pham-The
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam. or
| |
Collapse
|
9
|
Richter-Laskowska M, Trybek P, Delfino DV, Wawrzkiewicz-Jałowiecka A. Flavonoids as Modulators of Potassium Channels. Int J Mol Sci 2023; 24:1311. [PMID: 36674825 PMCID: PMC9861088 DOI: 10.3390/ijms24021311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Potassium channels are widely distributed integral proteins responsible for the effective and selective transport of K+ ions through the biological membranes. According to the existing structural and mechanistic differences, they are divided into several groups. All of them are considered important molecular drug targets due to their physiological roles, including the regulation of membrane potential or cell signaling. One of the recent trends in molecular pharmacology is the evaluation of the therapeutic potential of natural compounds and their derivatives, which can exhibit high specificity and effectiveness. Among the pharmaceuticals of plant origin, which are potassium channel modulators, flavonoids appear as a powerful group of biologically active substances. It is caused by their well-documented anti-oxidative, anti-inflammatory, anti-mutagenic, anti-carcinogenic, and antidiabetic effects on human health. Here, we focus on presenting the current state of knowledge about the possibilities of modulation of particular types of potassium channels by different flavonoids. Additionally, the biological meaning of the flavonoid-mediated changes in the activity of K+ channels will be outlined. Finally, novel promising directions for further research in this area will be proposed.
Collapse
Affiliation(s)
- Monika Richter-Laskowska
- The Centre for Biomedical Engineering, Łukasiewicz Research Network—Krakow Institute of Technology, 30-418 Krakow, Poland
| | - Paulina Trybek
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | | | - Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
10
|
Bui HTB, Nguyen PH, Pham QM, Tran HP, Tran DQ, Jung H, Hong QV, Nguyen QC, Nguyen QP, Le HT, Yang SG. Target Design of Novel Histone Deacetylase 6 Selective Inhibitors with 2-Mercaptoquinazolinone as the Cap Moiety. Molecules 2022; 27:2204. [PMID: 35408604 PMCID: PMC9000625 DOI: 10.3390/molecules27072204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations found in all human cancers are promising targets for anticancer therapy. In this sense, histone deacetylase inhibitors (HDACIs) are interesting anticancer agents that play an important role in the epigenetic regulation of cancer cells. Here, we report 15 novel hydroxamic acid-based histone deacetylase inhibitors with quinazolinone core structures. Five compounds exhibited antiproliferative activity with IC50 values of 3.4-37.8 µM. Compound 8 with a 2-mercaptoquinazolinone cap moiety displayed the highest antiproliferative efficacy against MCF-7 cells. For the HDAC6 target selectivity study, compound 8 displayed an IC50 value of 2.3 µM, which is 29.3 times higher than those of HDAC3, HDAC4, HDAC8, and HDAC11. Western blot assay proved that compound 8 strongly inhibited tubulin acetylation, a substrate of HDAC6. Compound 8 also displayed stronger inhibition activity against HDAC11 than the control drug Belinostat. The inhibitory mechanism of action of compound 8 on HDAC enzymes was then explored using molecular docking study. The data revealed a high binding affinity (-7.92 kcal/mol) of compound 8 toward HDAC6. In addition, dock pose analysis also proved that compound 8 might serve as a potent inhibitor of HDAC11.
Collapse
Affiliation(s)
- Hue Thi Buu Bui
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Phuong Hong Nguyen
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - Quan Minh Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Ha Noi 100000, Vietnam;
- Faculty of Chemistry; Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Ha Noi 100000, Vietnam
| | - Hoa Phuong Tran
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - De Quang Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Hosun Jung
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| | - Quang Vinh Hong
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Quoc Cuong Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Quy Phu Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Hieu Trong Le
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam; (D.Q.T.); (Q.V.H.); (Q.C.N.); (Q.P.N.); (H.T.L.)
| | - Su-Geun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, Korea; (P.H.N.); (H.P.T.); (H.J.)
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon 22332, Korea
| |
Collapse
|
11
|
Khalil HE, Ibrahim HIM, Ahmed EA, Emeka PM, Alhaider IA. Orientin, a Bio-Flavonoid from Trigonella hamosa L., Regulates COX-2/PGE-2 in A549 Cell Lines via miR-26b and miR-146a. Pharmaceuticals (Basel) 2022; 15:ph15020154. [PMID: 35215267 PMCID: PMC8876523 DOI: 10.3390/ph15020154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/16/2022] [Accepted: 01/23/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is a severe health condition and considered one of the major healthcare issues and is in need of innovative strategy for a cure. The current study aimed to investigate the chemical profile of Trigonella hamosa L. and a potential molecular approach to explain its regulation in cancer progression through an inflammatory mediator (COX-2) in A549 non-small lung cancer cell lines via in silico, mechanistic and molecular aspects. T. hamosa was extracted and then subjected to a CCK-8 cell viability assay in different cancer cell lines including MDA-MB-231, A549 and HCT-116. Total extract was subjected to several chromatographic techniques to yield orientin (OT); the structure was elucidated by inspection of NMR spectroscopic data. To achieve anticancer effects of OT, a cell viability assay using a CCK-8 kit, immunoprecipitation by Western blot, cell migration using a wound healing assay, cell invasion using a Matrigel-Transwell assay, apoptosis by AO/EB dual staining, flow cytometric analysis and DAPI staining, a silenced COX-2 model to determine PGE-2 production and real-time PCR and Western blot of BCL-2, CYP-1A1, iNOS and COX-2 markers were carried out. The results demonstrated that OT decreased the cell proliferation and controlled cell migration and invasive properties. OT destabilized the COX-2 mRNA and downregulated its expression in A549 cell lines. Virtual binding showed interaction (binding energy −10.43) between OT and COX-2 protein compared to the selective COX-2 inhibitor celecoxib (CLX) (binding energy −9.4). The OT-CLX combination showed a superior anticancer effect. The synergistic effect of OT-CLX combination was noticed in controlling the migration and invasion of A549 cell lines. OT-CLX downregulated the expression of BCL-2, iNOS and COX-2 and activated the proapoptotic gene CYP-1A1. OT mitigated the COX-2 expression via upregulation of miR-26b and miR-146a. Interestingly, COX-2-silenced transfected A549 cells exhibited reduced expression of miR-26b and miR-146a. The findings confirmed the direct interaction of OT with COX-2 protein. PGE-2 expression was quantified in both naïve and COX-2-silenced A549 cells. OT downregulated the release of PGE-2 in both tested conditions. These results confirmed the regulatory effect of OT on A549 cell growth in a COX-2-dependent manner. OT activated apoptosis via activation of CYP-1A1 expression in an independent manner. These results revealed that the OT-CLX combination could serve as a potential synergistic treatment for effective inflammatory-mediated anticancer strategies.
Collapse
Affiliation(s)
- Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (P.M.E.); (I.A.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Correspondence:
| | - Hairul-Islam Mohamed Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (H.-I.M.I.); (E.A.A.)
- Department of System Biology, Pondicherry Center for Biological Science and Educational Trust, Kottakuppam 605104, India
| | - Emad A. Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (H.-I.M.I.); (E.A.A.)
- Lab of Molecular Physiology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Promise Madu Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (P.M.E.); (I.A.A.)
| | - Ibrahim A. Alhaider
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (P.M.E.); (I.A.A.)
- Research and Development, Saudi Food and Drug Authority, Riyadh 13312, Saudi Arabia
| |
Collapse
|
12
|
Kostin RK, Marshavin AS. Pyrazoles, isoxazoles, and 1,2,3-triazoles as analogs of the natural cytostatic combretastatin A-4: efficient routes of synthesis, tubulin inhibition, and cytotoxicity. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Thanh NH, Thu Ha NT, Tra NT, Tu Anh LT, The Son N, Tuyen NV, Van Kiem P. Bannaxanthone E Induced Cell-Cycle Arrest and Apoptosis in Human Lung Cancer Cell Line. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211059010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The anti-cancer activity of bannaxanthone E isolated from Garcinia mckeaniana leaves was assessed through a flow cytometric method on human lung SK-LU-1 cancer cells, including cell cycle changes and induction of cell apoptosis. Treatment with bannaxanthone E led to the suppression of cell cycle progression at the G2/M phase to 19.6% at 4 µM, and induced apoptosis via cell morphological changes, increased the fluorescence signal in caspase-3/7 activation, and accumulation of apoptotic cells in the SK-LU-1 line at 4 µM to 25.7%.
Collapse
Affiliation(s)
- Nguyen Ha Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Thu Ha
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thanh Tra
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Thi Tu Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Phan Van Kiem
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
14
|
Chemical Constituents of Eupatorium japonicum and Anti-Inflammatory, Cytotoxic, and Apoptotic Activities of Eupatoriopicrin on Cancer Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6610347. [PMID: 34055014 PMCID: PMC8149239 DOI: 10.1155/2021/6610347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Eupatorium japonicum Thunb. of the plant family Asteraceae is a popular traditional herb in Vietnam. However, its chemical constituents as well as bioactive principles have not been investigated yet. We investigated the phytochemistry of E. japonicum in Vietnam and isolated seventeen compounds (1–17) including phytosterols, terpenoids, phenolic acids, flavonoids, fatty alcohols, and fatty acids. They were structurally determined by MS and NMR analysis. Except for compounds 6 and 12, all the other compounds were identified for the first time from E. japonicum. Since many sesquiterpene lactones with α-methylene γ-lactone ring are reported as anti-inflammatory and anticancer agents, eupatoriopicrin (10), 1-hydroxy-8-(4,5-dihydroxytigloyloxy)eudesma-4(15),11(13)-dien-6,12-olide (11) were selected among the isolates for biological assays. Compound 10 was identified as the main bioactive sesquiterpene lactone of E. japonicum showing its potent anti-inflammatory and cytotoxic activity through inhibiting NO production and the growth of HepG2 and MCF-7 human cancer cell lines. For the first time, eupatoriopicrin (10) was demonstrated to strongly inhibit NTERA-2 human cancer stem cell (CSC) line in vitro. It is noticeable that the cytotoxicity of eupatoriopicrin against NTERA-2 cells is mediated by its apoptosis-inducing capability of 10 as demonstrated by the results of Hoechst 33342 staining, flow cytometry apoptosis analysis, and caspase-3 activity assays. The biological activities of the main bioactive constituents 1–7, 10, 12, and 15 supported the reported anti-inflammatory and anticancer properties of extracts from E. japonicum.
Collapse
|