1
|
Rana MS, Rayhan NMA, Emon MSH, Islam MT, Rathry K, Hasan MM, Islam Mansur MM, Srijon BC, Islam MS, Ray A, Rakib MA, Islam A, Kudrat-E-Zahan M, Hossen MF, Asraf MA. Antioxidant activity of Schiff base ligands using the DPPH scavenging assay: an updated review. RSC Adv 2024; 14:33094-33123. [PMID: 39434996 PMCID: PMC11492428 DOI: 10.1039/d4ra04375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Schiff base ligands, formed from primary amines and carbonyl compounds, are potential antioxidants because they scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals via hydrogen atom transfer (HAT) and single electron transfer (SET) routes. This review aims to help design, synthesize, and discuss the antioxidant activity of Schiff base ligands based on their structure. This study critically discussed the solvent effect and the structural changes of Schiff base ligands responsible for DPPH scavenging activity, such as proton donating, electron-donating, and electron-withdrawing substituents, conjugation and ring structure. The ligands with electron-donating substituent groups in the phenolic ring demonstrated greater activity by readily stabilizing the radical and some of them showed higher activity than the standard. The activity also depends on the solvent used; the activity increases in those solvents that promote the proton and electron donation of the Schiff base. Schiff bases are most important due to their versatile applications, which can be explained by their antioxidant activity. The data led to the conclusion that the Schiff base ligand will serve as a source of synthetic antioxidants. There should be lots of scope for research on the antioxidant activity of Schiff bases. This review will assist researchers in studying Schiff base-based antioxidants and their applications. All the data analyzed in this paper was found from in vitro tests; for more clearance supplementary tests and in vivo investigations are crucial.
Collapse
Affiliation(s)
- Md Sohel Rana
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | | | | | - Md Tanvir Islam
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Khandaker Rathry
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Md Mahadi Hasan
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | | | | | - Md Shohidul Islam
- Department of Pharmacy, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Anik Ray
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Md Abdur Rakib
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Azharul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Md Kudrat-E-Zahan
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Md Faruk Hossen
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Md Ali Asraf
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| |
Collapse
|
2
|
Razaq N, Asghar A, Mumtaz A, Al-Mijalli SH, Nisa MU, Riaz T, Iqbal M, Shahid B. Synthesis of biologically active cefpodoxime and vanillin-based schiff base metal complexes with the detailed biological evaluations. Biometals 2024; 37:1201-1224. [PMID: 38864936 DOI: 10.1007/s10534-024-00601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Schiff bases of existing antimicrobial drugs are an area, which is still to be comprehensively explored to improve drug efficiency against consistently resisting bacterial species. In this study, we have targeted a new and eco-friendly method of condensation reaction that allows the "green synthesis" as well as improved biological efficacy. The transition metal complexes of cefpodoxime with well-enhanced biological activities were synthesized. The condensation reaction product of cefpodoxime and vanillin was further reacted with suitable metal salts of [Mn (II), Cu (II), Fe (II), Zn (II), and Ni (II)] with 1:2 molar ratio (metal: ligand). The characterization of all the products were carried out by using UV-Visible, elemental analyzer, FTIR, 1H-NMR, ICP-OES, and LC-MS. Electronic data obtained by UV-Visible proved the octahedral geometry of metal complexes. The biological activities Schiff base ligand and its transition metal complexes were tested by using in-vitro anti-bacterial analysis against various Gram-negative, as well as Gram-positive bacterial strains. Proteinase and protein denaturation inhibition assays were utilized to evaluate the products in-vitro anti-inflammatory activities. The in vitro antioxidant activity of the ligand and its complexes was evaluated by utilizing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) in-vitro method. The final results proved metal complexes to be more effective against bacterial microorganisms as compared to respective parent drug as well as their free ligands. Patch Dock, a molecular docking tool, was used to dock complexes 1a-5e with the crystal structure of GlcN-6-P synthase (ID: 1MOQ). According to the docking results, complex 2b exhibited a highest score (8,882; ACE = -580.43 kcal/mol) that is well correlated with a high inhibition as compared to other complexes which corresponds to the antibacterial screening outcomes.
Collapse
Affiliation(s)
- Naeem Razaq
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan
| | - Amina Asghar
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan.
| | - Amna Mumtaz
- ACRC PCSIR Laboratories Lahore, Lahore, Pakistan
| | - Samiah H Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mehr Un Nisa
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Tauheeda Riaz
- Department of Chemistry, Government College Women University Sialkot, Sialkot, 51310, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Bilal Shahid
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan.
| |
Collapse
|
3
|
Hassan SM, Morsy JM, Hassanin HM, Othman ES, Mostafa MA. New synthetic chitosan Schiff bases bearing pyranoquinolinone or benzonaphthyridine and their silver nanoparticles derivatives with potential activity as antioxidant and molecular docking study for EGFR inhibitors. RSC Adv 2024; 14:29919-29933. [PMID: 39309650 PMCID: PMC11413560 DOI: 10.1039/d4ra05117c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
In this study, two new carboxaldehydes 3, and 4 were synthesized by Vilsmeier-Haack formylation of 6-butyl-benzo[h][1,6]naphthyridine-2,5-dione 2 and 6-butyl-pyrano[3,2-c]quinolinone 1, respectively. Structures of newly synthesized compounds were achieved by IR, 1H NMR, 13C NMR, mass techniques, and elemental analyses. The two synthesized carboxaldehydes 3 and 4 were used as precursors for the synthesis of two new chitosan-based Schiff bases, CS1 and CS2. The new chitosan Schiff bases were grafted on silver nanoparticles, providing CS1/Ag and CS2/Ag structures. However, CS1 and CS2 and their silver nanoparticles were characterized by FT-IR, XRD, SEM-EDX, XRF, TEM, TGA, and DSC. The target compounds CS1, CS2, CS1/Ag, and CS2/Ag were assessed as radical scavengers against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH%). The results showed that CS1 and CS2 had a better ability to scavenge DPPH radical than its unmodified chitosan. CS1/Ag and CS2/Ag, combining the unique properties of silver and Schiff bases, displayed excellent antioxidant activity (IC50, 59.13, and 32.54 μg mL-1, respectively). In addition, the previous compounds were tested in vitro for inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase using the EGFR kinase assay kit (Cat. #40321). In particular, compound CS1/Ag displayed potent inhibitory activity towards EGFR with IC50 20.45 μg mL-1 compared to reference drug sorafenib (IC50 = 0.76 μg mL-1). The bioactivity of new chitosan Schiff bases was studied by molecular docking to see how they bind with the EGFR receptor. The results implied that CS1 has a higher binding energy than CS2 and CS regarding EGFR kinase, which agreed with the results obtained from the experimental EGFR inhibition assay.
Collapse
Affiliation(s)
- Shrouk M Hassan
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Jehan M Morsy
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Hany M Hassanin
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Elham S Othman
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| | - Mai A Mostafa
- Department of Chemistry, Faculty of Education, Ain Shams University Roxy 11711 Cairo Egypt
| |
Collapse
|
4
|
Sarıdağ T, Buldurun K. New Ruthenium-p-Cymene Complexes Containing o-Vanillin and 4-Benzoxybenzaldehyde Schiff Base Ligands; Synthesis, Characterization and Catalytic Activity in the Transfer Hydrogenation of Ketones. Catal Letters 2023. [DOI: 10.1007/s10562-023-04286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Recent Overview of Potent Antioxidant Activity of Coordination Compounds. Antioxidants (Basel) 2023; 12:antiox12020213. [PMID: 36829772 PMCID: PMC9952845 DOI: 10.3390/antiox12020213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
During recent decades, the complexation of organic ligands toward several metal ions of s-p and d-block has been applied as a plan to enhance its antioxidant performance. Due to their wide range of beneficial impacts, coordination compounds are widely used in industries, specifically in the medicinal and pharmaceutical fields. The activity is generally improved by chelation consequently knowing that the characteristics of both ligands and metals can lead to the development of greatly active compounds. Chelation compounds are a substitute for using the traditional synthetic antioxidants, because metal chelates present benefits, including a variety in geometry, oxidation states, and coordination number, that assist and favor the redox methods associated with antioxidant action. As well as understanding the best studied anti-oxidative assets of these compounds, coordination compounds are involved in the free radical scavenging process and protecting human organisms from the opposing effects of these radicals. The antioxidant ability can be assessed by various interrelated systems. The methodological modification offers the most knowledge on the antioxidant property of metal chelates. Colorimetric techniques are the most used, though electron paramagnetic resonance (EPR) is an alternative for metallic compounds, since color does not affect the results. Information about systems, with their benefits, and restrictions, permits a dependable valuation of the antioxidant performance of coordination compounds, as well as assisting application in various states wherever antioxidant drugs are required, such as in food protection, appropriate good-packaged foods, dietary supplements, and others. Because of the new exhaustive analysis of organic ligands, it has become a separate field of research in chemistry. The present investigation will be respected for providing a foundation for the antioxidant properties of organic ligands, future tests on organic ligands, and building high-quality antioxidative compounds.
Collapse
|
6
|
Sajjan VP, Anigol LB, Gurubasavaraj PM, Patil D, Patil PS, Gummagol NB, Quah CK, Wong QA, Celik I. New2-((2-(2,4-dinitrophenyl)hydrazineeylidene) derivatives: design, synthesis, in silico, and in vitro anticancer studies. J Biomol Struct Dyn 2023; 41:11681-11699. [PMID: 36602778 DOI: 10.1080/07391102.2022.2163424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
A series of novel hydrazone compounds have been synthesized by the condensation of hydrazines and different substituted salicylaldehydes at a molar ratio of 1:1 in one step reaction and characterized by FT-IR, ESI-MS, 1H NMR, and single crystal x-ray diffraction. The crystal structure of the compound shows a trans configuration around the C = N bond and triclinic system with P -1/-p 1. Synthesized compounds were screened for cytotoxicity activities against A375 (melanoma), HT-29 (Colon), and A549 (lung) cancer cell lines. Among them, compound 2 exhibited the highest cytotoxic effect against the A375 cell line (IC50 = 0.30 µM) and HT-29 cell line (1.68 µM), compared to those of apatinib as a reference standard drug (0.28, 1.49 µM, respectively). The cytocompatibility assay on the L929 normal cell line and the hemolysis assay on human RBC were used to validate the non-toxic action. From DFT calculation, the various parameters such as HOMO-LUMO energies, Hirshfeld, and MEP have been studied. Furthermore, in silico molecular docking with three receptors was studied. Among four compounds, compound 2 has the lowest binding energy against cyclin dependent kinase (ΔGb = -9.3 kcal/mol). In addition to this, molecular dynamics (MD) simulation was also performed. Based on this study, these novel hydrazones can be considered a promising anticancer agent due to their potent cytotoxicity activities and computational analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vinodkumar P Sajjan
- Department of Chemistry, Rani Channamma University, Belagavi, Karnataka, India
| | - Lakkappa B Anigol
- Department of Chemistry, Rani Channamma University, Belagavi, Karnataka, India
| | | | - Dhanashree Patil
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | | | - Neelamma B Gummagol
- Department of Physics, Rani Channamma University, Belagavi, Karnataka, India
| | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, George Town, Penang, Malaysia
| | - Qin Ai Wong
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, George Town, Penang, Malaysia
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
7
|
Savcı A, Buldurun K, Alkış ME, Alan Y, Turan N. Synthesis, characterization, antioxidant and anticancer activities of a new Schiff base and its M(II) complexes derived from 5-fluorouracil. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:172. [PMID: 35972705 DOI: 10.1007/s12032-022-01774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 10/15/2022]
Abstract
In this study, Schiff base ligand was obtained from the condensation reaction of benzene-1,2-diamine and 5-fluoropyrimidine-2,4(1H,3H)-dione (5-FU). Metal(II) complexes were synthesized with Fe(II), Co(II) and Ni(II) chloride salts. The synthesized ligand and metal complexes were characterized by FT-IR, UV-vis, 1H-13C NMR, elemental analyses, mass spectroscopy, magnetic moments, molar conductivity and thermogravimetric analysis studies. With the help of different techniques reveal Fe(II), Co(II) and Ni(II) complexes have exhibited tetrahedral and octahedral geometry. Ligand acted as bidentate and it binds metal(II) ions through deprotonated-NH, imine-N atom and carbonyl-O atom, respectively. DPPH, ABTS, FRAP, CUPRAC and total antioxidant activity methods were used to determine the antioxidant properties of ligand and metal complexes. According to the results, the synthesized compounds showed very high antioxidant activity compared to 5-FU. The cytotoxicities of the synthesized compounds were performed on MCF-7 (human breast cancer) and L-929 (fibroblast) cell lines using the MTT assay. In addition, the effect of electroporation (EP) on the cytotoxicity of the compounds was investigated. Our results demonstrated that novel Co(II) and Ni(II) complexes show potential as new anticancer agents and ECT may be a viable treatment option for breast cancer.
Collapse
Affiliation(s)
- Ahmet Savcı
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Mus Alparslan University, 49250, Mus, Turkey.
| | - Kenan Buldurun
- Department of Medical Services and Techniques, Health Services Vocational School, Mus Alparslan University, 49250, Mus, Turkey
| | - Mehmet Eşref Alkış
- Department of Occupational Health and Safety, Faculty of Health Sciences, Mus Alparslan University, 49250, Mus, Turkey
| | - Yusuf Alan
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Mus Alparslan University, 49250, Mus, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Mus Alparslan University, 49250, Mus, Turkey
| |
Collapse
|
8
|
Medetalibeyoğlu H, Türkan F, Manap S, Bursal E, Beytur M, Aras A, Akyıldırım O, Kotan G, Gürsoy-Kol Ö, Yüksek H. Synthesis and acetylcholinesterase enzyme inhibitory effects of some novel 4,5-Dihydro-1 H-1,2,4-triazol-5-one derivatives; an in vitro and in silico study. J Biomol Struct Dyn 2022:1-9. [PMID: 35442162 DOI: 10.1080/07391102.2022.2066021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, a series of novel Schiff bases (4a-4h) containing 1,2,4-triazole structure were synthesized through a condensation reaction of 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones with 3-(4-methylbenzenesulfonyloxy)-benzaldehyde. The structures of 3-alkyl(aryl)-4-[3-(4-methylsulfonyloxy)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-ones (4a-h) were determined through a range of spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and elemental analysis). In addition, enzyme inhibitory properties of the newly synthesized Schiff bases were determined against acetylcholinesterase (AChE). Their Ki values were calculated in the range of 0.70 ± 0.07-8.65 ± 5.6 µM. Besides, their IC50 values were calculated in the range of 0.43-3.87 µM. Finally, in silico molecular docking interactions of the compounds with AChE target enzyme (PDB ID:4EY7) were evaluated using Chimera and AutoDock Vina softwares. The lowest binding energy levels (-12.0 kcal/mol) of the compounds 4e and 4g with AChE target enzyme were verified the best binding affinities and molecular interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hilal Medetalibeyoğlu
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Iğdır University, Iğdır, Turkey
| | - Sevda Manap
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, Turkey
| | - Ercan Bursal
- Department of Nursing, Faculty of Health, Muş Alparslan University, Muş, Turkey
| | - Murat Beytur
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts, Igdır University, Igdır, Turkey
| | - Onur Akyıldırım
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Gül Kotan
- Kars Vocational School, Kafkas University, Kars, Turkey
| | - Özlem Gürsoy-Kol
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, Turkey
| |
Collapse
|