1
|
Kim SC, Kim A, Park JY, Hwang EM. Improved AAV vector system for cell-type-specific RNA interference. J Neurosci Methods 2021; 368:109452. [PMID: 34953938 DOI: 10.1016/j.jneumeth.2021.109452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND RNA interference (RNAi) is a powerful technique to effectively silence or knock down gene function in mammalian cells. For better cell-type RNAi experiments in vivo, AAV vector-based RNA interference systems need to be improved. New method: In this study, we developed an AAV vector (CREon shRNA) that expressed CRE-dependent short hairpin RNA (shRNA) and fluorescent proteins simultaneously. RESULTS We verified the Cre-dependent knockdown efficiency of the newly developed CREon shRNA vector in both HEK293T cells overexpressing TREK-1 and PC3 cells with endogenous TREK-1. Next, we packaged this TREK-1 CREon vector with AAV and injected it into the hippocampus of the brain together with a synapsin or GFAP promoter-driven CRE virus, confirming that it works well cell-selectively even in vivo. Finally, this viral vector was applied to an animal model of LPS-induced depression to determine whether behavioral changes occurred. Comparison with existing methods: With the existing pSico or pAAV-Sico-Red vectors, expression of fluorescent protein disappears when shRNA is conditionally activated by CRE recombinase, but our Creon shRNA vector showed simultaneous expression of both shRNA and fluorescent protein. Thus, it offers the advantage of allowing easy visual distinction of knocked-down cells. CONCLUSION The newly improved CREon shRNA vector can be used as a novel research tool for conditional shRNA, and may be useful for various in vivo studies such as cancer and neurobiology.
Collapse
Affiliation(s)
- Seung-Chan Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Ajung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae-Yong Park
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
2
|
Fujimoto Y, Kyogoku K, Takeda K, Ozaki K, Yamamoto S, Suyama H, Ono E. Antiviral effects against influenza A virus infection by a short hairpin RNA targeting the non-coding terminal region of the viral nucleoprotein gene. J Vet Med Sci 2019; 81:383-388. [PMID: 30674743 PMCID: PMC6451914 DOI: 10.1292/jvms.18-0436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi) can inhibit Influenza A virus (IAV) infection in a gene-specific manner. In this study, we constructed a transgene expressing a short hairpin RNA
(shRNA) that targets the noncoding region of the IAV RNA gene encoding nucleoprotein (NP). To investigate the antiviral effects of the shRNA, we generated two transgenic mouse lines with
this transgene. Unfortunately, there was no apparent difference in IAV resistance between transgenic and non-transgenic littermates. To further investigate the antiviral effects of the
shRNA, we prepared mouse embryonic fibroblasts (MEFs) from transgenic and non-transgenic mice. In experimental infections using these MEFs, virus production of mouse-adapted IAV strain
A/Puerto Rico/8/1934 (PR8) in the transgenic MEFs was suppressed by means of the down-regulation of the viral RNA gene transcription in the early stages of infection in comparison with
non-transgenic MEFs. These results indicated that expression of the shRNA was able to confer antiviral properties against IAVs to MEFs, although the effects were limited. Our findings
suggest that the shRNA targeting the noncoding region of the viral RNA (vRNA) of NP might be a supporting tool in developing influenza-resistant poultry.
Collapse
Affiliation(s)
- Yoshikazu Fujimoto
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Research Center, Kagoshima University, 1-21-24 Kagoshima-shi, Kagoshima 890-0065, Japan
| | - Kenji Kyogoku
- Biotechnology Development Laboratories, Health Care Solutions Research Institute, Kaneka Corporation, 1-8 Takasago-shi, Hyogo 676-8688, Japan
| | - Keiko Takeda
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kinuyo Ozaki
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Sayo Yamamoto
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Haruka Suyama
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.,Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Park SK, Kee Y, Ryu T, Kim H, Hwang BJ. Enzymatic construction of shRNA library from oligonucleotide library. Genes Genomics 2019; 41:573-581. [PMID: 30830681 DOI: 10.1007/s13258-019-00800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Short hairpin RNAs (shRNAs) expressed from vectors have been used as an effective means of exploiting the RNA interference (RNAi) pathway in mammalian cells. Genome-scale screening with shRNA libraries has been used to investigate the relationship between genotypes and phenotypes on a large scale. Although several methods have been developed to construct shRNA libraries, their broad application has been limited by the high cost of constructing these libraries. OBJECTIVE We develop a new method that efficiently constructs a shRNA library at low cost, using treatments with several enzymes and an oligonucleotide library. METHODS The library of shRNA expression cassettes, which were cloned into a lentiviral plasmid, was produced through several enzymatic reactions, starting from a library of 20,000 different short oligonucleotides produced by microarray-based oligonucleotide synthesis. RESULTS The NGS sequence analysis of the library shows that 99.8% of them (19,956 from 20,000 sequences) were contained in the library: 63.2% of them represent the correct sequences and the rest showed one or two base pair differences from the expected sequences. CONCLUSION Considering the ease of our method, shRNA libraries of new genomes and of specific populations of genes can be prepared in a short period of time for genome-scale RNAi library screening.
Collapse
Affiliation(s)
- Seong Kyun Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, 24341, South Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, 24341, South Korea
| | - Taehoon Ryu
- Celemics, 19F, Bldg.A, BYC Highcity, 131, Gasandigital 1-ro,Geumcheon-gu, Seoul, 153-718, Republic of Korea
| | - Hyoki Kim
- Celemics, 19F, Bldg.A, BYC Highcity, 131, Gasandigital 1-ro,Geumcheon-gu, Seoul, 153-718, Republic of Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, 24341, South Korea.
| |
Collapse
|
4
|
Park SK, Hwang BJ, Kee Y. Promoter cross-talk affects the inducible expression of intronic shRNAs from the tetracycline response element. Genes Genomics 2019; 41:483-490. [PMID: 30656518 DOI: 10.1007/s13258-019-00784-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND RNA interference (RNAi), defined as double-stranded, RNA-mediated gene silencing, is a useful tool for functional genomic studies. Along with increasing information about genomic sequences due to the innovative development of genome-sequencing technologies, functional genomic technologies are needed to annotate the genome and determine the processes by which each gene is regulated. Lentiviral vectors have been used to efficiently deliver reagents, such as small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs), into cells and tissues for functional genomic analyses. OBJECTIVE We developed a lentiviral vector that efficiently expresses intronic shRNA from the tetracycline regulatory element (TRE) promoter in a doxycycline-dependent manner. METHODS We developed a lentiviral vector system that contains reverse tetracycline-controlled transactivator 3 (rtTA3) and the TRE promoter, which are necessary for the doxycycline-inducible expression of shRNAs that are expressed as intronic miR-30a precursors. We then measured the cross-talk between the cytomegalovirus (CMV) and TRE promoters in the vector. RESULTS We found that nearby promoters influence each other and that the TRE promoter should be located far from other promoters, such as the CMV promoter, in a vector. The orientation of a promoter with respect to other promoters also influences its transcriptional activity. A head-to-head orientation of the CMV and TRE promoters maintains the lowest level of transcription from TRE in the absence of doxycycline, compared to the tail-to-tail and head-to-tail orientations. CONCLUSION Based on these findings, we were able to construct a lentiviral vector that faithfully expresses intronic miR-30a shRNA precursors in a doxycycline-inducible manner.
Collapse
Affiliation(s)
- Seong Kyun Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea.
| |
Collapse
|
5
|
Yan N, Su J, Yang C, Rao Y, Feng X, Wan Q, Lei C. Grass carp SARM1 and its two splice variants negatively regulate IFN-I response and promote cell death upon GCRV infection at different subcellular locations. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:102-115. [PMID: 25280626 DOI: 10.1016/j.dci.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
Sterile alpha and Toll/IL-1R motif containing 1 (SARM1) negatively regulates TRIF-dependent TLR signaling in mammals. However, its immune function remains unclear in teleost. Here, a grass carp Ctenopharyngodon idella SARM1 (CiSARM1) gene and its two novel splice variants (CiSARM1s1 and CiSARM1s2) were identified. CiSARM1s1 and CiSARM1s2 are generated by intron retention mechanism, and they only retain N-terminal HEAT/armadillo motifs. In C. idella kidney (CIK) cells, CiSARM1 and CiSARM1s1 are located in mitochondria, whereas CiSARM1s2 distributes in the whole cell. All the three transcripts are ubiquitously expressed in 15 investigated tissues. They were responsive to GCRV in vivo and in vitro and to viral/bacterial PAMPs in vitro, implying they participate in both antiviral and antibacterial immune responses. By overexpression experiment, CiSARM1 and its two isoforms affected each other's expression in CIK cells. CiSARM1 inhibited GCRV-triggered IFN-I response by affecting the expressions of CiTRIF, CiMyD88, CiIPS-1, CiTRAF6, CiTBK1, CiIRF3 and CiIRF7 in TRIF-, MyD88- and IPS-1-dependent pathways; CiSARM1s1 and CiSARM1s2 inhibited GCRV-triggered IFN-I production through suppressing the expressions of CiMyD88, CiIPS-1, CiTRAF6, CiTBK1, CiIRF3 and CiIRF7 in MyD88- and IPS-1-dependent pathways. Moreover, antiviral activity assays indicated that all the three genes promote GCRV-induced cell death. These results were further verified by RNAi experiments. Thus, CiSARM1 and its two splice variants jointly prevent excessive activation of the host immune response. These findings uncover the regulatory mechanisms of SARM1 in teleost and lay a foundation for further functional and evolutionary researches on SARM1.
Collapse
Affiliation(s)
- Nana Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Chunrong Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoli Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Quanyuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Ahlemeyer B, Vogt JF, Michel V, Hahn-Kohlberger P, Baumgart-Vogt E. Microporation is an efficient method for siRNA-induced knockdown of PEX5 in HepG2 cells: evaluation of the transfection efficiency, the PEX5 mRNA and protein levels and induction of peroxisomal deficiency. Histochem Cell Biol 2014; 142:577-91. [PMID: 25224142 DOI: 10.1007/s00418-014-1254-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
Abstract
The pathomechanism of peroxisomal biogenesis disorders (PBDs), a group of inherited autosomal recessive diseases with mutations of peroxin (PEX) genes, is not yet fully understood. Therefore, several knockout models, e.g., the PEX5 knockout mouse, have been generated exhibiting a complete loss of peroxisomal function. In this study, we wanted to knockdown PEX5 using the siRNA technology (1) to mimic milder forms of PBDs in which the mutated peroxin has some residual function and (2) to analyze the cellular consequences of a reduction of the PEX5 protein without adaption during the development as it is the case in a knockout animal. First, we tried to optimize the transfection of the hepatoma cell line HepG2 with PEX5 siRNA using different commercially available liposomal and non-liposomal transfection reagents (Lipofectamine(®) 2000, FuGENE 6, HiPerFect(®), INTERFERin™, RiboJuice™) as well as microporation using the Neon™ Transfection system. Microporation was found to be superior to the transfection reagents with respect to the transfection efficiency (100 vs. 0-70%), to the reduction of PEX5 mRNA (by 90 vs. 0-50%) and PEX5 protein levels (by 70 vs. 0-50%). Interestingly, we detected that a part of the cleaved PEX5 mRNA still existed as 3' fragment (15%) 24 h after microporation. Using microporation, we further analyzed whether the reduced PEX5 protein level impaired peroxisomal function. We indeed detected a reduced targeting of SKL-tagged proteins into peroxisomes as well as an increased oxidative stress as found in PBD patients and respective knockout mouse models. Knockdown of the PEX5 protein and functional consequences were at a maximum 48 h after microporation. Thereafter, the PEX5 protein was resynthesized, which may allow the temporal analysis of the loss as well as the reconstitution of peroxisomes in the future. In conclusion, we propose microporation as an efficient and reproducible method to transfect HepG2 cells with PEX5 siRNA. We succeeded to transiently knockdown PEX5 mRNA and its protein level leading to functional consequences similar as observed in peroxisome deficiencies.
Collapse
Affiliation(s)
- Barbara Ahlemeyer
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus Liebig University, Aulweg 123, 35385, Giessen, Germany,
| | | | | | | | | |
Collapse
|
7
|
Chen X, Wang Q, Yang C, Rao Y, Li Q, Wan Q, Peng L, Wu S, Su J. Identification, expression profiling of a grass carp TLR8 and its inhibition leading to the resistance to reovirus in CIK cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:82-93. [PMID: 23632252 DOI: 10.1016/j.dci.2013.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
TLR8 (toll-like receptor 8), a homolog of TLR3, TLR7 and TLR9 as prototypical intracellular members of TLR family, is generally associated with sensing single stranded RNA and plays a pivotal role in antiviral immune response. In this study, a TLR8 gene from grass carp Ctenopharyngodon idella (designated as CiTLR8) was obtained and characterized. The full-length cDNA of CiTLR8 was of 3766 bp. The open reading frame was of 3072 bp and encoded a polypeptide of 1023 amino acids, including seventeen LRR (leucine-rich repeat) motifs, one transmembrane domain and one TIR (toll/interleukin-1 receptor) domain. A single intron with the size of 839 bp was found on the neck of start codon (ATG). CiTLR8 mRNA was ubiquitously expressed in the 15 tested tissues and the expression level in gas bladder, spleen, brain, hindgut and trunk kidney tissues was high. Besides, the CiTLR8 expression in spleen and head kidney was significantly up-regulated and reached peak at 24 h post-injection of grass carp reovirus (GCRV). CiTLR8 transcription reached peak at 8 h and then declined below the normal level post-GCRV infection in the C. idella kidney (CIK) cell line; and it was rapidly and significantly down-regulated by the stimulation of the synthetic double-stranded RNA polyriboinosinic-polyribocytidylic acid sodium salt (poly I:C) in CIK cells in a dose and time-dependent manner. The inhibitor expression vectors were constructed and transfected into CIK cell line to obtain stably expressing shRNA targeting TLR8. In CiTLR8-knockdown cells, CiTLR7 transcript weakly increased, CiIFN-I mRNA was significantly down-regulated, and the expression of CiMyD88, CiIRF7 and CiMx1 scarcely changed. Post poly I:C stimulation, CiTLR8, CiTLR7 and CiMyD88 transcripts significantly increased, CiIRF7 was down-regulated after an initial phase of increase, and CiIFN-I and CiMx1 transcripts were up-regulated. After GCRV infection, the transcripts of CiTLR8, CiTLR7, CiMyD88 and CiIRF7 were up-regulated, but CiIFN-I and CiMx1 transcripts were inhibited. Nevertheless, cells transfected with pshTLR8 vectors had strong resistance against GCRV injection, suggesting CiTLR8 might play a negative role in antiviral immune response. These results collectively suggested that CiTLR8 was a novel member of TLR gene family, engaging in antiviral innate immune defense in C. idella, which laid a foundation for the further mechanism research of TLR8 in fishes.
Collapse
Affiliation(s)
- Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu XY, Tang QS, Chen HC, Jiang XL, Fang H. Lentiviral miR30-based RNA interference against heparanase suppresses melanoma metastasis with lower liver and lung toxicity. Int J Biol Sci 2013; 9:564-77. [PMID: 23847439 PMCID: PMC3708037 DOI: 10.7150/ijbs.5425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 05/18/2013] [Indexed: 12/30/2022] Open
Abstract
Aim: To construct short hairpin RNAs (shRNAs) and miR30-based shRNAs against heparanase (HPSE) to compare their safety and their effects on HPSE down-modulation in vitro and in vivo to develop a more ideal therapeutic RNA interference (RNAi) vector targeting HPSE. Methods: First, we constructed shRNAs and miR30-based shRNAs against HPSE (HPSE-shRNAs and HPSE-miRNAs) and packed them into lentiviral vectors. Next, we observed the effects of the shRNAs on knockdown for HPSE expression, adhesion, migration and invasion abilities in human malignant melanoma A375 cells in vitro. Furthermore, we compared the effects of the shRNAs on melanoma growth, metastasis and safety in xenograft models. Results: Our data showed that these artificial miRNAs targeting HPSE could be effective RNAi agents mediated by Pol II promoters in vitro and in vivo, although these miRNAs were not more potent than the HPSE-shRNAs. It was noted that obvious lung injuries, rarely revealed previously, as well as hepatotoxicity could be caused by lentivirus-mediated shRNAs (LV shRNAs) rather than lentivirus-mediated miRNAs (LV miRNAs) in vivo. Furthermore, enhanced expression of pro-inflammatory cytokines IL-6 and TGF-β1 and endogenous mmu-miR-21a-5p were detected in lung tissues of shRNAs groups, whereas the expression of mmu-let-7a-5p, mmu-let-7b-5p and mmu-let-7c-5p were down-regulated. Conclusion: These findings suggest that artificial miRNAs display an improved safety profile of lowered lung injury or hepatotoxicity relative to shRNAs in vivo. The mechanism of lung injuries caused by shRNAs may be correlated with changes of endogenous miRNAs in the lung. Our data here increase the flexibility of a miRNA-based RNAi system for functional genomic and gene therapy applications.
Collapse
Affiliation(s)
- Xiao-yan Liu
- Department of Dermatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | | | | | | | | |
Collapse
|
9
|
Adam SA, Butin-Israeli V, Cleland MM, Shimi T, Goldman RD. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors. Nucleus 2013; 4:142-50. [PMID: 23475125 PMCID: PMC3621746 DOI: 10.4161/nucl.24089] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lamin A and the B-type lamins, lamin B1 and lamin B2, are translated as pre-proteins that are modified at a carboxyl terminal CAAX motif by farnesylation, proteolysis and carboxymethylation. Lamin A is further processed by proteolysis to remove the farnesyl, but B-type lamins remain permanently farnesylated. Two childhood diseases, Hutchinson Gilford Progeria Syndrome and restrictive dermopathy are caused by defects in the processing of lamin A, resulting in permanent farnesylation of the protein. Farnesyltransferase inhibitors, originally developed to target oncogenic Ras, have recently been used in clinical trials to treat children with Hutchinson Gilford Progeria Syndrome. Lamin B1 and lamin B2 play important roles in cell proliferation and organ development, but little is known about the role of farnesylation in their functions. Treating normal human fibroblasts with farnesyltransferase inhibitors causes the accumulation of unprocessed lamin B2 and lamin A and a decrease in mature lamin B1. Normally, lamins are concentrated at the nuclear envelope/lamina, but when farnesylation is inhibited, the peripheral localization of lamin B2 decreases as its nucleoplasmic levels increase. Unprocessed prelamin A distributes into both the nuclear envelope/lamina and nucleoplasm. Farnesyltransferase inhibitors also cause a rapid cell cycle arrest leading to cellular senescence. This study suggests that the long-term inhibition of protein farnesylation could have unforeseen consequences on nuclear functions.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
10
|
An artificial miRNA against HPSE suppresses melanoma invasion properties, correlating with a down-regulation of chemokines and MAPK phosphorylation. PLoS One 2012; 7:e38659. [PMID: 22719918 PMCID: PMC3376136 DOI: 10.1371/journal.pone.0038659] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 05/08/2012] [Indexed: 12/16/2022] Open
Abstract
Ribonucleic acid interference (RNAi) based on microRNA (miRNA) context may provide an efficient and safe therapeutic knockdown effect and can be driven by ribonucleic acid polymerase II (RNAP II). In this study, we designed and synthesized miR155-based artificial miRNAs against heparanase (HPSE) constructed with BLOCK-iT™ Pol II miR RNAi Expression Vector Kit. The expression levels of HPSE declined significantly in both the mRNA and protein levels in HPSE-miRNA transfected melanoma cells that exhibited reduction of adhesion, migration, and invasion ability in vitro and in vivo. We also observed that HPSE miRNA could inhibit the expressions of chemokines of interleukin-8 (IL8) and chemokine (C-X-C motif) ligand 1 (CXCL1), at both the transcriptional and translational levels. Further study on its probable mechanism declared that down-regulation of IL8 and CXCL1 by HPSE-miRNA may be correlated with reduced growth-factor simulated mitogen-activated kinase (MAPK) phosphorylation including p38 MAPK, c-Jun N-terminal kinase (JNK) and extracellular-signal-regulated kinase (ERK) 1 and 2, which could be rescued by miRNA incompatible mutated HPSE cDNA. In conclusion, we demonstrated that artificial miRNAs against HPSE might serve as an alterative mean of therapy to low HPSE expression and to block the adhesion, invasion, and metastasis of melanoma cells. Furthermore, miRNA-based RNAi was also a powerful tool for gene function study.
Collapse
|
11
|
Dai R, Shen SJ, Wan PC, Shi GQ, Meng QY, Liu SR. [shRNAs driven by K14 promoter induce tissue-specific RNA interference]. YI CHUAN = HEREDITAS 2011; 33:757-62. [PMID: 22049690 DOI: 10.3724/sp.j.1005.2011.00757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA interference is an efficient method for exploring gene function. Accumulating evidence suggests that RNA Pol II promoters can direct cell- or tissue-specific gene silencing. A eGFP-shRNA fusion construct transcribed from an RNA Pol II promoter (K14 promoter) was used to induce gene-specific shRNA silencing ofBMP4 gene expression. Recombinant vectors (pEGFP-C1-shRNA, psiCHECK-BMP4, and pEGFP-K14-shRNA) were constructed. Vectors pEGFP-C1-shRNA and psiCHECK-BMP4 were cotransfected into Hela cells (in vitro) and shRNA-induced inhibition efficiency was tested by a luciferase assay. The results showed that all the six interference sequences inhibited the expression of BMP4 with high efficiency (>60%), and the interference sequence 5# showed the highest efficiency. For in vivo screening of JB6-C41 cells transfected with vector pEGFP-K14-shRNA, the inhibition efficiency was assayed by quantitative RT-PCR and Western blotting analyses. The results showed that the mRNA and protein products of the exogenous BMP4 gene were efficiently and specifically inhibited. The efficiency of gene silencing was greater than 60%, except for sequence 3#. The declines in mRNA and protein expression levels were significantly correlated during gene silence by the shRNA. This system may be adapted for in vivo shRNA expression and gene silencing. This method may provide a novel approach for the application of RNAi technology in suppressing gene expression in the analysis of the mechanisms of hair follicle development in sheep.
Collapse
Affiliation(s)
- Rong Dai
- College of Animal Science, Shihezi University, Shihezi 832000, China.
| | | | | | | | | | | |
Collapse
|
12
|
Nie L, Thakur MD, Wang Y, Su Q, Zhao Y, Feng Y. Regulation of U6 promoter activity by transcriptional interference in viral vector-based RNAi. GENOMICS PROTEOMICS & BIOINFORMATICS 2011; 8:170-9. [PMID: 20970745 PMCID: PMC5054135 DOI: 10.1016/s1672-0229(10)60019-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The direct negative impact of the transcriptional activity of one component on the second one in cis is referred to as transcriptional interference (TI). U6 is a type III RNA polymerase III promoter commonly used for driving small hairpin RNA (shRNA) expression in vector-based RNAi. In the design and construction of viral vectors, multiple transcription units may be arranged in close proximity in a space-limited vector. Determining if U6 promoter activity can be affected by TI is critical for the expression of target shRNA in gene therapy or loss-of-function studies. In this research, we designed and implemented a modified retroviral system where shRNA and exogenous gene expressions were driven by two independent transcriptional units. We arranged U6 promoter driving shRNA expression and UbiC promoter in two promoter arrangements. In primary macrophages, we found U6 promoter activity was inhibited by UbiC promoter when in the divergent arrangement but not in tandem. In contrast, PKG promoter had no such negative impact. Instead of enhancing U6 promoter activity, CMV enhancer had significant negative impact on U6 promoter activity in the presence of UbiC promoter. Our results indicate that U6 promoter activity can be affected by TI in a proximal promoter-specific and arrangement-dependent manner.
Collapse
Affiliation(s)
- Linghu Nie
- Key Laboratory of Genome Sciences and Information, Cancer Biology and Genetics Group, Beijing Institute of Genomics, Chinese Acadamy of Sciences, Beijing 100029, China
| | - Meghna Das Thakur
- Departments of Medicine and Cell Biology, Washington University, St. Louis, MO 63110, USA
| | - Yumei Wang
- Departments of Medicine and Cell Biology, Washington University, St. Louis, MO 63110, USA
| | - Qin Su
- Immunocore Limited, Abingdon, Oxon OX14 4RX, UK
| | - Yongliang Zhao
- Key Laboratory of Genome Sciences and Information, Cancer Biology and Genetics Group, Beijing Institute of Genomics, Chinese Acadamy of Sciences, Beijing 100029, China
| | - Yunfeng Feng
- Departments of Medicine and Cell Biology, Washington University, St. Louis, MO 63110, USA
- Corresponding author.
| |
Collapse
|
13
|
Fujioka T, Matsunaga N, Okazaki H, Koyanagi S, Ohdo S. Hypoxia-Response Plasmid Vector Producing bcl-2 shRNA Enhances the Apoptotic Cell Death of Mouse Rectum Carcinoma. J Pharmacol Sci 2010; 113:353-61. [DOI: 10.1254/jphs.10054fp] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
14
|
Chen Z, Liang K, Xie M, Wang X, Lü Q, Zhang J. Novel ultrasound-targeted microbubble destruction mediated short hairpin RNA plasmid transfection targeting survivin inhibits gene expression and induces apoptosis of HeLa cells. Mol Biol Rep 2009; 36:2059-67. [PMID: 18991017 DOI: 10.1007/s11033-008-9417-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
Survivin is an attractive target for tumor growth inhibition and represents a significant approach to anticancer therapy. RNA interference is an important tool for specifically down-regulating the expression of cellular genes. However, the efficiency of short hairpin RNA (shRNA) on the expression of survivin gene and the influence on the cell apoptosis transfected by the non-viral gene transfer system of ultrasound-targeted microbubble destruction was not explored. In this work, recombinant expression plasmid of shRNA targeting survivin gene was constructed and added to cultured cervical cancer cells followed by ultrasound exposure and SonoVue((R)) microbubble. Expression of survivin mRNA and protein were assessed by RT-PCR and western blot analysis. Apoptosis ratio was quantified by flow cytometry marked with annexin V and 7-AAD. After transfected for 48 h, the expression of survivin mRNA and protein were (16.67 +/- 2.73)% and (21.33 +/- 3.55)%, respectively. The apoptosis rate was (45.41 +/- 1.47)%. The differences were significant as compared with other groups (P < 0.01). In conclusion, we suggested that survivin could be regarded as an ideal anticancer target of cervical cancer. Recombinant expression plasmid of shRNA targeting survivin gene mediated by ultrasound-targeted microbubble destruction technique could effectively inhibit the expression of target gene and induce cell apoptosis. This novel method for RNA interference represents a powerful, promising non-viral technology that can be used in the tumor gene therapy and research.
Collapse
Affiliation(s)
- Zhiyi Chen
- Department of Medical Ultrasound, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou 510150, China.
| | | | | | | | | | | |
Collapse
|
15
|
Suppression of zebrafish VEGF gene by cytomegalovirus promoter-driven short hairpin constructs induces vascular development defects and down regulation NRP1 expression. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0154-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Yang SL, Yan S, Niu RL, Lin XK. VEGF gene silencing by cytomegalovirus promoter driven ShRNA expression vector results in vascular development defects in zebrafish. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409090038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Rhee SW, Stimers JR, Wang W, Pang L. Vascular smooth muscle-specific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy. J Pharmacol Exp Ther 2009; 329:775-82. [PMID: 19244098 DOI: 10.1124/jpet.108.148866] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.
Collapse
Affiliation(s)
- Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
18
|
An efficient method to enhance gene silencing by using precursor microRNA designed small hairpin RNAs. Mol Biol Rep 2008; 36:1483-9. [PMID: 18758992 DOI: 10.1007/s11033-008-9339-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
Gene silencing can be mediated by small interfering RNA (siRNA) and microRNA (miRNA). To investigate the potential application of using a precursor microRNA (pre-miRNA) backbone for gene silencing, we studied the inhibition efficiency of exogenous GFP and endogenous GAPDH by conventional shRNA- and pre-miRNA-designed hairpins, respectively. In this study, the conventional shRNA-, pre-miRNA-30-, and pre-miRNA-155-designed hairpins targeting either GFP or GAPDH were transfected into the HEK293 cells that were mediated by the pSilencer-4.1-neo vector, which carries a modified RNA polymerase II-type CMV promoter. Comparisons with conventional GFP shRNA showed that GFP levels were reduced markedly by pre-miRNA-30- and pre-miRNA-155-designed GFP shRNAs by fluorescence microscopy. The consistent results from semi-quantitative RT-PCR and Western blot analysis revealed that pre-miRNA-30- and pre-miRNA-155-designed GFP shRNAs could suppress GFP expression significantly. As for endogenous GAPDH, the results from semi-quantitative RT-PCR and Western blot analysis showed that pre-miRNA-30- and pre-miRNA-155-designed GAPDH shRNAs could suppress GAPDH expression even more efficiently than conventional GAPDH shRNA. Together, this study confirmed the efficiency of gene silencing mediated by pre-miRNA-30- and pre-miRNA-155-designed shRNAs, demonstrating that pre-miRNA-designed hairpins are a good strategy for gene silencing.
Collapse
|
19
|
Su J, Zhu Z, Wang Y, Xiong F, Zou J. The cytomegalovirus promoter-driven short hairpin RNA constructs mediate effective RNA interference in zebrafish in vivo. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:262-269. [PMID: 18214611 DOI: 10.1007/s10126-007-9059-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 05/25/2023]
Abstract
The ability to utilize the RNA interference (RNAi) machinery for silencing target-gene expression has created a lot of excitement in the research community. In the present study, we used a cytomegalovirus (CMV) promoter-driven DNA template approach to induce short hairpin RNA (shRNA) triggered RNAi to block exogenous Enhanced Green Fluorescent Protein (EGFP) and endogenous No Tail (NTL) gene expressions. We constructed three plasmids, pCMV-EGFP-CMV-shGFP-SV40, pCMV-EGFP-CMV-shNTL-SV40, and pCMV-EGFP-CMV-shScrambled-SV40, each containing a CMV promoter driving an EGFP reporter cDNA and DNA coding for one shRNA under the control of another CMV promoter. The three shRNA-generating plasmids and pCMV-EGFP control plasmid were introduced into zebrafish embryos by microinjection. Samples were collected at 48 h after injection. Results were evaluated by phenotype observation and real-time fluorescent quantitative reverse-transcription polymerase chain reaction (Q-PCR). The shGFP-generating plasmid significantly inhibited the EGFP expression viewed under fluorescent microscope and reduced by 70.05 +/- 1.26% of exogenous EGFP gene mRNA levels compared with controls by Q-PCR. The shRNA targeting endogenous NTL gene resulted in obvious NTL phenotype of 30 +/- 4% and decreased the level of their corresponding mRNAs up to 54.52 +/- 2.05% compared with nontargeting control shRNA. These data proved the feasibility of the CMV promoter-driven shRNA expression technique to be used to inhibit exogenous and endogenous gene expressions in zebrafish in vivo.
Collapse
Affiliation(s)
- Jianguo Su
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
20
|
Ely A, Naidoo T, Mufamadi S, Crowther C, Arbuthnot P. Expressed anti-HBV primary microRNA shuttles inhibit viral replication efficiently in vitro and in vivo. Mol Ther 2008; 16:1105-12. [PMID: 18431360 DOI: 10.1038/mt.2008.82] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The use of RNA interference (RNAi) to inhibit gene expression is potentially applicable in the treatment of viral infections such as hepatitis B virus (HBV) persistence. Although efficient HBV gene silencing by short hairpin RNA (shRNA) expressed from RNA polymerase (Pol) III promoters has been reported, constitutive high-level transcription may cause harmful side effects. Here, we report an approach that allows the use of a Pol II promoter to improve transcription regulation of expressed RNAi effecters. Pol II [cytomegalovirus (CMV)] or Pol III (U6) promoter cassettes that transcribe anti-HBV primary microRNA (pri-miR)-122 and pri-miR-31 shuttles were generated. In cultured cells both types of pri-miR-like sequences effected knockdown of markers of viral replication (>80%) and were processed to form intended 21-nucleotide guides. The concentration of CMV-expressed miRs was approximately 85-fold lower than the U6 shRNA-derived guide RNA. When cells were co-transfected with pri-miR expression cassettes, attenuation of independent RNAi-mediated gene silencing was not observed, which is in contrast to the action of U6 shRNA expression cassettes. The efficacy of the anti-HBV pri-miR shuttles in vivo was verified using the murine hydrodynamic injection model. Employing Pol II-expressed pri-miR mimics may be useful in the treatment of HBV infection, and potentially also for generic application in RNAi-based therapy.
Collapse
Affiliation(s)
- Abdullah Ely
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
21
|
Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat 2008; 113:443-56. [DOI: 10.1007/s10549-008-9956-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
22
|
Numnum TM, Makhija S, Lu B, Wang M, Rivera A, Stoff-Khalili M, Alvarez RD, Zhu ZB, Curiel DT. Improved anti-tumor therapy based upon infectivity-enhanced adenoviral delivery of RNA interference in ovarian carcinoma cell lines. Gynecol Oncol 2007; 108:34-41. [PMID: 18061250 DOI: 10.1016/j.ygyno.2007.08.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/24/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Hec1 (Highly Expressed in Cancer gene 1) has recently been shown to play an important role in the proper segregation of chromosomes during mitosis. Recently, an adenovirus delivery system carrying RNA interference (RNAi) of Hec1 has been reported in a cervical adenocarcinoma model. Adenoviral delivery systems, however, have the main limitation of poor viral infectivity due to lack of the native receptor, Coxsackie-Adenovirus Receptor (CAR), on the surface of tumor cells. We hypothesize that the viral infectivity of the adenovirus vector would be enhanced via a CAR-independent pathway by altering the targeting tropism, thus increasing the knockdown effect of Hec1 expression in ovarian carcinoma cells. METHODS Two adenoviruses (Ad-siRNA-Hec1 and Ad-siRNA-Hec1.F5/3), along with a negative control (Ad-siRNA-GAPDH.F5/3), were created using homologous recombination. HEY and SKOV3.ip1 cell lines were used to perform experiments. The following assays were then used to determine RNAi knockdown efficiency: (1) quantitative PCR (QPCR), (2) Western blot, (3) MTS assay, (4) Annexin V-FITC FACS, (5) crystal violet staining. In all experiments, a negative control served as a baseline measure. RESULTS QPCR demonstrated a 2-log viral infectivity enhancement with Ad-siRNA-Hec1.F5/3 over Ad-siRNA-Hec1. QPCR at 72 h revealed mRNA knockdown induced by Ad-siRNA-Hec1 and Ad-siRNA-Hec1.F5/3 in SKOV3.ip1 and HEY cells, respectively (71%/60%, and 32%/78% mRNA knockdown compared to negative control). Western blot revealed translational inhibition induced by both Hec1 Ads with the least knockdown seen with Ad-siRNA-GAPDH.F5/3. FACS analysis revealed increased annexin V positivity in RNAi-infected cells, suggesting a higher rate of apoptosis. MTS assay indicated increased cell death 8 days post-infection with Ad-siRNA-Hec1 and Ad-siRNA-Hec1.F5/3 in SKOV3.ip1 and HEY cell lines, respectively (75% vs. 35% and 43% vs. 12% viable cells). Crystal violet staining revealed increased cell death with Ad-siRNA-Hec1.F5/3 in all tested cell lines. CONCLUSIONS RNAi against Hec1 results in gene expression knockdown and apoptosis in vitro. The infectivity-enhanced adenovirus as delivery mechanism shows potential application in future gene therapy models of RNAi in ovarian cancer.
Collapse
Affiliation(s)
- T Michael Numnum
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, 618 20th Street South, Old Hillman Building-Room 538, Birmingham, AL 35249-7333, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Peng Y, Lu JX, Shen XF. shRNA driven by Pol II/T7 dual-promoter system effectively induce cell-specific RNA interference in mammalian cells. Biochem Biophys Res Commun 2007; 360:496-500. [PMID: 17604000 DOI: 10.1016/j.bbrc.2007.06.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Accepted: 06/19/2007] [Indexed: 11/25/2022]
Abstract
Although Pol III promoters synthesize shRNA and elicit RNAi efficiently, however, a major limitation is that they are constitutively expressed in all cell types. To circumvent this problem, in the present study, we described a novel shRNA vector based on Pol II/T7 dual-promoter couple system: the transcription of shRNA under the control of T7 promoter is dependent on the corresponding T7 RNA polymerase driven by Pol II promoter. Our results strongly demonstrated that such a dual-promoter system can efficiently mediate shRNA expression and specifically reduce the exogenous reporter gene expression in mammalian cells. Furthermore, when hepatoma specific AFP promoter was introduced to control T7 RNA polymerase expression, the RNA interference was permitted only in AFP-producing cells. To our knowledge, this is the first evidence that shRNA can be expressed in a cell-specific manner from Pol II/T7 dual-promoter system in mammalian cells.
Collapse
Affiliation(s)
- Ying Peng
- School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325025, People's Republic of China.
| | | | | |
Collapse
|