1
|
Kuhlmann N, Milnerwood AJ. A Critical LRRK at the Synapse? The Neurobiological Function and Pathophysiological Dysfunction of LRRK2. Front Mol Neurosci 2020; 13:153. [PMID: 32973447 PMCID: PMC7482583 DOI: 10.3389/fnmol.2020.00153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Since the discovery of LRRK2 mutations causal to Parkinson's disease (PD) in the early 2000s, the LRRK2 protein has been implicated in a plethora of cellular processes in which pathogenesis could occur, yet its physiological function remains elusive. The development of genetic models of LRRK2 PD has helped identify the etiological and pathophysiological underpinnings of the disease, and may identify early points of intervention. An important role for LRRK2 in synaptic function has emerged in recent years, which links LRRK2 to other genetic forms of PD, most notably those caused by mutations in the synaptic protein α-synuclein. This point of convergence may provide useful clues as to what drives dysfunction in the basal ganglia circuitry and eventual death of substantia nigra (SN) neurons. Here, we discuss the evolution and current state of the literature placing LRRK2 at the synapse, through the lens of knock-out, overexpression, and knock-in animal models. We hope that a deeper understanding of LRRK2 neurobiology, at the synapse and beyond, will aid the eventual development of neuroprotective interventions for PD, and the advancement of useful treatments in the interim.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Austen J Milnerwood
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Leucine-Rich Repeat Kinase 2 Controls Inflammatory Cytokines Production through NF-κB Phosphorylation and Antigen Presentation in Bone Marrow-Derived Dendritic Cells. Int J Mol Sci 2020; 21:ijms21051890. [PMID: 32164260 PMCID: PMC7084871 DOI: 10.3390/ijms21051890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the causal molecule of familial Parkinson’s disease. Although the characteristics of LRRK2 have gradually been revealed, its true physiological functions remain unknown. LRRK2 is highly expressed in immune cells such as B2 cells and macrophages, suggesting that it plays important roles in the immune system. In the present study, we investigate the roles of LRRK2 in the immune functions of dendritic cells (DCs). Bone marrow-derived DCs from both C57BL/6 wild-type (WT) and LRRK2 knockout (KO) mice were induced by culture with granulocyte/macrophage-colony stimulating factor (GM/CSF) in vitro. We observed the differentiation of DCs, the phosphorylation of the transcriptional factors NF-κB, Erk1/2, and p-38 after lipopolysaccharide (LPS) stimulation and antigen-presenting ability by flow cytometry. We also analyzed the production of inflammatory cytokines by ELISA. During the observation period, there was no difference in DC differentiation between WT and LRRK2-KO mice. After LPS stimulation, phosphorylation of NF-κB was significantly increased in DCs from the KO mice. Large amounts of inflammatory cytokines were produced by DCs from KO mice after both stimulation with LPS and infection with Leishmania. CD4+ T-cells isolated from antigen-immunized mice proliferated to a significantly greater degree upon coculture with antigen-stimulated DCs from KO mice than upon coculture with DCs from WT mice. These results suggest that LRRK2 may play important roles in signal transduction and antigen presentation by DCs.
Collapse
|
3
|
Kang UB, Marto JA. Leucine-rich repeat kinase 2 and Parkinson's disease. Proteomics 2016; 17. [PMID: 27723254 DOI: 10.1002/pmic.201600092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein that is expressed in many tissues and participates in numerous biological pathways. Mutations in LRRK2 are recognized as genetic risk factors for familial Parkinson's disease (PD) and may also represent causal factors in the more common sporadic form of PD. The structure of LRRK2 comprises a combination of GTPase, kinase, and scaffolding domains. This functional diversity, combined with a potentially central role in genetic and idiopathic PD motivates significant effort to further credential LRRK2 as a therapeutic target. Here, we review the current understanding for LRRK2 function in normal physiology and PD, with emphasis on insight gained from proteomic approaches.
Collapse
Affiliation(s)
- Un-Beom Kang
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Leucine-rich repeat kinase 2 is a regulator of B cell function, affecting homeostasis, BCR signaling, IgA production, and TI antigen responses. J Neuroimmunol 2016; 292:1-8. [PMID: 26943952 DOI: 10.1016/j.jneuroim.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 11/22/2022]
Abstract
LRRK2 is the causal molecule of autosomal dominant familial Parkinson's disease. B2 cells express a much higher LRRK2 mRNA level than B1 cells. To reveal the function of LRRK2 in B cells, we analyzed B cell functions in LRRK2-knockout (LRRK2(-/-)) mice. LRRK2(-/-) mice had significantly higher counts of peritoneal B1 cells than wild-type mice. After BCR stimulation, phosphor-Erk1/2 of splenic B2 cells was enhanced to a higher degree in LRRK2(-/-) mice. LRRK2(-/-) mice had a significantly higher serum IgA level, and TNP-Ficoll immunization increased the titer of serum anti-TNP IgM antibody. LRRK2 may play important roles in B cells.
Collapse
|
5
|
Holm IE, Alstrup AKO, Luo Y. Genetically modified pig models for neurodegenerative disorders. J Pathol 2015; 238:267-87. [DOI: 10.1002/path.4654] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ida E Holm
- Department of Pathology; Randers Hospital; 8930 Randers Denmark
- Department of Clinical Medicine; Aarhus University; 8000 Aarhus C Denmark
| | | | - Yonglun Luo
- Department of Biomedicine; Aarhus University; 8000 Aarhus C Denmark
| |
Collapse
|
6
|
Farajzadeh L, Hornshøj H, Momeni J, Thomsen B, Larsen K, Hedegaard J, Bendixen C, Madsen LB. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level. Biochem Biophys Res Commun 2013; 438:346-52. [PMID: 23896602 DOI: 10.1016/j.bbrc.2013.07.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022]
Abstract
The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i.e. cerebellum versus heart for differential variation at the gene, isoform, and transcription start site (TSS), and promoter level showed that several of the genes differed at all four levels. Interestingly, these genes were mainly annotated to the "electron transport chain" and neuronal differentiation, emphasizing that "tissue important" genes are regulated at several levels. Furthermore, our analysis shows that the "across tissue approach" has a promising potential when screening for possible explanations for variations, such as those observed at the gene expression levels.
Collapse
Affiliation(s)
- Leila Farajzadeh
- Department of Molecular Biology and Genetics, Faculty of Sciences and Technology, Aarhus University, DK-8830 Tjele, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice. PLoS One 2013; 8:e63778. [PMID: 23675505 PMCID: PMC3651128 DOI: 10.1371/journal.pone.0063778] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/05/2013] [Indexed: 11/19/2022] Open
Abstract
Missense mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are linked to autosomal dominant forms of Parkinson's disease (PD). In order to get insights into the physiological role of Lrrk2, we examined the distribution of Lrrk2 mRNA and different splice variants in the developing murine embryo and the adult brain of Mus musculus. To analyse if the Lrrk2-paralog, Lrrk1, may have redundant functions in PD-development, we also compared Lrrk1 and Lrrk2 expression in the same tissues. Using radioactive in situ hybridization, we found ubiquitous expression of both genes at low level from embryonic stage E9.5 onward, which progressively increased up until birth. The developing central nervous system (CNS) displayed no prominent Lrrk2 mRNA signals at these time-points. However, in the entire postnatal brain Lrrk2 became detectable, showing strongest level in the striatum and the cortex of adult mice; Lrrk1 was only detectable in the mitral cell layer of the olfactory bulb. Thus, due to the non-overlapping expression patterns, a redundant function of Lrrk2 and Lrrk1 in the pathogenesis of PD seems to be unlikely. Quantification of Lrrk2 mRNA and protein level in several brain regions by real-time PCR and Western blot verified the striatum and cortex as hotspots of postnatal Lrrk2 expression. Strong expression of Lrrk2 is mainly found in neurons, specifically in the dopamine receptor 1 (DRD1a) and 2 (DRD2)-positive subpopulations of the striatal medium spiny neurons. Finally, we identified 2 new splice-variants of Lrrk2 in RNA-samples from various adult brain regions and organs: a variant with a skipped exon 5 and a truncated variant terminating in an alternative exon 42a. In order to identify the origin of these two splice variants, we also analysed primary neural cultures independently and found cell-specific expression patterns for these variants in microglia and astrocytes.
Collapse
|
8
|
de Almeida AM, Bendixen E. Pig proteomics: A review of a species in the crossroad between biomedical and food sciences. J Proteomics 2012; 75:4296-314. [DOI: 10.1016/j.jprot.2012.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/04/2012] [Accepted: 04/08/2012] [Indexed: 11/29/2022]
|
9
|
Regulation of LRRK2 expression points to a functional role in human monocyte maturation. PLoS One 2011; 6:e21519. [PMID: 21738687 PMCID: PMC3124520 DOI: 10.1371/journal.pone.0021519] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/02/2011] [Indexed: 01/05/2023] Open
Abstract
Genetic variants of Leucine-Rich Repeat Kinase 2 (LRRK2) are associated with a significantly enhanced risk for Parkinson disease, the second most common human neurodegenerative disorder. Despite major efforts, our understanding of LRRK2 biological function and regulation remains rudimentary. In the present study we analyze LRRK2 mRNA and protein expression in sub-populations of human peripheral blood mononuclear cells (PBMCs). LRRK2 mRNA and protein was found in circulating CD19+ B cells and in CD14+ monocytes, whereas CD4+ and CD8+ T cells were devoid of LRRK2 mRNA. Within CD14+ cells the CD14+CD16+ sub-population of monocytes exhibited high levels of LRRK2 protein, in contrast to CD14+CD16- cells. However both populations expressed LRRK2 mRNA. As CD14+CD16+ cells represent a more mature subset of monocytes, we monitored LRRK2 expression after in vitro treatment with various stress factors known to induce monocyte activation. We found that IFN-γ in particular robustly increased LRRK2 mRNA and protein levels in monocytes concomitant with a shift of CD14+CD16− cells towards CD14+CD16+cells. Interestingly, the recently described LRRK2 inhibitor IN-1 attenuated this shift towards CD14+CD16+ after IFN-γ stimulation. Based on these findings we speculate that LRRK2 might have a role in monocyte maturation. Our results provide further evidence for the emerging role of LRRK2 in immune cells and regulation at the transcriptional and translational level. Our data might also reflect an involvement of peripheral and brain immune cells in the disease course of PD, in line with increasing awareness of the role of the immune system in PD.
Collapse
|
10
|
Bendixen E, Danielsen M, Larsen K, Bendixen C. Advances in porcine genomics and proteomics--a toolbox for developing the pig as a model organism for molecular biomedical research. Brief Funct Genomics 2010; 9:208-19. [DOI: 10.1093/bfgp/elq004] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
11
|
Zhang J, Liao G, Liu C, Sun L, Liu Y, Wang Y, Jiang Z, Wang Z. The association of CLOCK gene T3111C polymorphism and hPER3 gene 54-nucleotide repeat polymorphism with Chinese Han people schizophrenics. Mol Biol Rep 2010; 38:349-54. [PMID: 20364331 DOI: 10.1007/s11033-010-0114-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
Many reports have shown that the biologic rhythm could be altered due to mutations of circadian gene hClock or hPeriod, and the mutations of circadian genes have some relationship with psychosis according to recent studies. A preliminary study has been conducted to examine wether the T3111C single nucleotide polymorphism of the hClock gene or the length polymorphism of the hPer3 gene is associated with the development of schizophrenia. The samples from schizophrenics (n=148, male: 57.4%, female: 42.6%) and normal controls (n=199, male: 59.3%, female: 40.7%) were examined. Allele frequencies of T3111C SNP of hClock were significantly different between schizophrenics and controls (χ2=19.738, P<0.05). Schizophrenics had a significantly higher frequency of the C allele compared with controls (OR=2.613, 95% CI=1.693-4.034). On the other hand, there is no significant difference of allele frequencies of 18 exon of hper3 between schizophrenics and controls (χ2=0.192, P>0.05). Our results suggest that the T3111C (RS1801260) polymorphism of hClock gene is associated with schizophrenia, but it seems that the length polymorphism of 18 exon of hPer3 may not be associated with schizophrenia. It is important to address of the relationship between circadian gene polymorphisms and dopamine functions in further study.
Collapse
Affiliation(s)
- Jing Zhang
- Health Ministry Key Laboratory of Chronobiology, School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Maekawa T, Kubo M, Yokoyama I, Ohta E, Obata F. Age-dependent and cell-population-restricted LRRK2 expression in normal mouse spleen. Biochem Biophys Res Commun 2010; 392:431-5. [PMID: 20079710 DOI: 10.1016/j.bbrc.2010.01.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 01/12/2010] [Indexed: 10/20/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the causal molecule of familial Parkinson's disease (PD), but its true physiological function remains unknown. In the normal mouse, LRRK2 is expressed in kidney, spleen, and lung at much higher levels than in brain, suggesting that LRRK2 may play an important role in these organs. Analysis of age-related changes in LRRK2 expression demonstrated that expression in kidney, lung, and various brain regions was constant throughout adult life. On the other hand, expression of both LRRK2 mRNA and protein decreased markedly in spleen in an age-dependent manner. Analysis of purified spleen cells indicated that B lymphocytes were the major population expressing LRRK2, and that T lymphocytes showed no expression. Consistently, the B lymphocyte surface marker CD19 exhibited an age-dependent decrease of mRNA expression in spleen. These results suggest a possibly novel function of LRRK2 in the immune system, especially in B lymphocytes.
Collapse
Affiliation(s)
- Tatsunori Maekawa
- Division of Clinical Immunology, Kitasato University, 1-15-1 Kitasato, Kanagawa 228-8555, Japan
| | | | | | | | | |
Collapse
|
13
|
LRRK2 and neurodegeneration. Acta Neuropathol 2009; 117:227-46. [PMID: 19142648 DOI: 10.1007/s00401-008-0478-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 12/24/2008] [Accepted: 12/24/2008] [Indexed: 10/21/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 gene (PARK8/LRRK2) encoding the protein Lrrk2 are causative of inherited and sporadic Parkinson's disease (PD) with phenotypic manifestations of frontotemporal lobar degeneration, corticobasal degeneration and associated motor neuron disease in some patients, and with variable penetrance. Neuropathology is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta in all cases with accompanying Lewy pathology, or tau pathology or without intraneuronal inclusions, thus indicating that mutations in LRRK2 are not always manifested as Lewy body disease (LBD) or as alpha-synucleinopathy. Molecular studies have not disclosed clear association between nerve cell degeneration and modifications in the kinase activity of Lrrk2, and the pathogenesis of LRRK2 mutations remains unknown. Several morphological studies have suggested that Lrrk2 is a component of Lewy bodies and aberrant neurites in sporadic PD and Dementia with Lewy bodies, whereas other studies have indicated that Lrrk2 does not participate in Lewy body composition. Likewise, some studies have shown Lrrk2 immunoreactivity in hyper-phosphorylated tau inclusions in Alzheimer's disease (AD) and other tauopathies, whereas other studies did not find Lrrk2 in hyper-phosphorylated tau inclusions. We have used three currently used anti-Lrrk2 antibodies (NB-300-268, NB-300-267 and AP7099b) and concluded that these differences are largely dependent on the antibodies used and, particularly, on the interpretation of the origin of the multiple bands of low molecular weight species, in addition to the band corresponding to full-length Lrrk2, that recognize the majority of these antibodies. A review of the available data and our results indicate that full-length Lrrk2 is not a major component of Lewy bodies in LBDs, and of hyper-phosphorylated tau inclusions in AD and tauopathies. Bands of low molecular weight are probably not the result of post-mortem artefacts as they are also present in cultured cells processed under optimal conditions. Truncated forms of Lrrk2 and additional transcripts related with LRRK2, in the absence of spliced forms of Lrrk2 may account for Lrrk2 immunoreactivity in distinct intraneuronal inclusions.
Collapse
|