1
|
Naelitz BD, Khooblall PS, Parekh NV, Vij SC, Rotz SJ, Lundy SD. The effect of red blood cell disorders on male fertility and reproductive health. Nat Rev Urol 2024; 21:303-316. [PMID: 38172196 DOI: 10.1038/s41585-023-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Male infertility is defined as a failure to conceive after 12 months of unprotected intercourse owing to suspected male reproductive factors. Non-malignant red blood cell disorders are systemic conditions that have been associated with male infertility with varying severity and strength of evidence. Hereditary haemoglobinopathies and bone marrow failure syndromes have been associated with hypothalamic-pituitary-gonadal axis dysfunction, hypogonadism, and abnormal sperm parameters. Bone marrow transplantation is a potential cure for these conditions, but exposes patients to potentially gonadotoxic chemotherapy and/or radiation that could further impair fertility. Iron imbalance might also reduce male fertility. Thus, disorders of hereditary iron overload can cause iron deposition in tissues that might result in hypogonadism and impaired spermatogenesis, whereas severe iron deficiency can propagate anaemias that decrease gonadotropin release and sperm counts. Reproductive urologists should be included in the comprehensive care of patients with red blood cell disorders, especially when gonadotoxic treatments are being considered, to ensure fertility concerns are appropriately evaluated and managed.
Collapse
Affiliation(s)
- Bryan D Naelitz
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Prajit S Khooblall
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Neel V Parekh
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sarah C Vij
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Seth J Rotz
- Department of Paediatric Hematology and Oncology, Cleveland Clinic Children's Hospital, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Scott D Lundy
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
2
|
Guo W, Kang C, Wang X, Zhang H, Yuan L, Wei X, Xiao Q, Hao W. Chlorocholine chloride exposure induced spermatogenic dysfunction via iron overload caused by AhR/PERK axis-dependent ferritinophagy activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116193. [PMID: 38460407 DOI: 10.1016/j.ecoenv.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.
Collapse
Affiliation(s)
- Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
3
|
Cai C, Hu W, Chu T. Interplay Between Iron Overload and Osteoarthritis: Clinical Significance and Cellular Mechanisms. Front Cell Dev Biol 2022; 9:817104. [PMID: 35096841 PMCID: PMC8795893 DOI: 10.3389/fcell.2021.817104] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
There are multiple diseases or conditions such as hereditary hemochromatosis, hemophilia, thalassemia, sickle cell disease, aging, and estrogen deficiency that can cause iron overload in the human body. These diseases or conditions are frequently associated with osteoarthritic phenotypes, such as progressive cartilage degradation, alterations in the microarchitecture and biomechanics of the subchondral bone, persistent joint inflammation, proliferative synovitis, and synovial pannus. Growing evidences suggest that the conditions of pathological iron overload are associated with these osteoarthritic phenotypes. Osteoarthritis (OA) is an important complication in patients suffering from iron overload-related diseases and conditions. This review aims to summarize the findings and observations made in the field of iron overload-related OA while conducting clinical and basic research works. OA is a whole-joint disease that affects the articular cartilage lining surfaces of bones, subchondral bones, and synovial tissues in the joint cavity. Chondrocytes, osteoclasts, osteoblasts, and synovial-derived cells are involved in the disease. In this review, we will elucidate the cellular and molecular mechanisms associated with iron overload and the negative influence that iron overload has on joint homeostasis. The promising value of interrupting the pathologic effects of iron overload is also well discussed for the development of improved therapeutics that can be used in the field of OA.
Collapse
Affiliation(s)
- Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
4
|
In vitro effect of ferrous sulphate on bovine spermatozoa motility parameters, viability and Annexin V-labeled membrane changes. PLoS One 2021; 16:e0257766. [PMID: 34555113 PMCID: PMC8460022 DOI: 10.1371/journal.pone.0257766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to assess the dose- and time-dependent in vitro effects of ferrous sulphate (FeSO4.7H2O) on the motility parameters, viability, structural and functional activity of bovine spermatozoa. Spermatozoa motility parameters were determined after exposure to concentrations (3.90, 7.80, 15.60, 31.20, 62.50, 125, 250, 500 and 1000 μM) of FeSO4.7H2O using the SpermVisionTM CASA (Computer Assisted Semen Analyzer) system in different time periods. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, and the Annexin V-Fluos was applied to detect the membrane integrity of spermatozoa. The initial spermatozoa motility showed increased average values at all experimental concentrations compared to the control group (culture medium without FeSO4.7H2O). After 2 h, FeSO4.7H2O stimulated the overall percentage of spermatozoa motility at the concentrations of ≤ 125 μM. However, experimental administration of 250 μM of FeSO4.7H2O significantly (P < 0.001) decreased the spermatozoa motility but had no negative effect on the cell viability (P < 0.05) (Time 2 h). The lowest viability was noted after the addition of ≥ 500 μM of FeSO4.7H2O (P < 0.001). The concentrations of ≤ 62.50 μM of FeSO4.7H2O markedly stimulated (P < 0.001) spermatozoa activity after 24 h of exposure, while at high concentrations of ≥ 500 μM of FeSO4.7H2O the overall percentage of spermatozoa motility was significantly inhibited (P < 0.001) and it elicited cytotoxic action. Fluorescence analysis confirmed that spermatozoa incubated with higher concentrations (≥ 500 μM) of FeSO4.7H2O displayed apoptotic changes, as detected in head membrane (acrosomal part) and mitochondrial portion of spermatozoa. Moreover, the highest concentration and the longest time of exposure (1000 μM of FeSO4.7H2O; Time 6 h) induced even necrotic alterations to spermatozoa. These results suggest that high concentrations of FeSO4.7H2O are able to induce toxic effects on the structure and function of spermatozoa, while low concentrations may have the positive effect on the fertilization potential of spermatozoa.
Collapse
|
5
|
Yesil S, Sungu N, Kilicarslan A, Kuskonmaz SM, Kara H, Kucuk A, Polat F, Kavutcu M, Arslan M. Exenatide reduces oxidative stress and cell death in testis in iron overload rat model. Exp Ther Med 2018; 16:4349-4356. [PMID: 30546390 PMCID: PMC6256837 DOI: 10.3892/etm.2018.6795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) has been demonstrated to affect the oxidative stress status in several in vitro, in vivo and clinical studies. The aim of the present study was to evaluate the effect of a GLP-1 analogue, exenatide, on oxidative stress parameters and apoptotic markers in testicular cells in an iron overload rat model. To obtain this model, the animals were randomly divided into three groups (n=6/group). Rats in the control group received intraperitoneal injections of saline. Intraperitoneal iron dextran (60 mg/kg/day) was given to Group FE for 5 days a week for 4 weeks. The third group (Group Fe +E) was given subcutaneous injections of 10 µg/kg exenatide in two divided doses for 4 weeks in addition to iron dextran. Testes of all rats were immediately removed for immunohistochemical staining and to measure the malondialdehyde level and superoxide dismutase enzyme activity. A significant reduction was observed in caspase-8 and -3 enzyme staining in testicular stromal and endothelial cells in exenatide injected iron overloaded rats when compared with controls. Oxidative stress markers malondialdehyde levels and superoxide dismutase enzyme activities were also significantly lower in exenatide-injected rats when compared with controls. These findings indicate that exenatide may be protective against the harmful effects of iron accumulation in testis. Further studies are required to evaluate how exenatide reduces oxidative stress and cell death in iron overloaded testis tissue.
Collapse
Affiliation(s)
- Suleyman Yesil
- Department of Urology, Gazi University Medical Faculty, Ankara 06510, Turkey
| | - Nuran Sungu
- Department of Pathology, Yıldırım Beyazıt University Medical Faculty, Ankara 06010, Turkey
| | - Aydan Kilicarslan
- Department of Pathology, Yıldırım Beyazıt University Medical Faculty, Ankara 06010, Turkey
| | - Serife Mehlika Kuskonmaz
- Department of Endocrinology and Metabolism, Gazi University Medical Faculty, Ankara 06510, Turkey
| | - Halil Kara
- Department of Pharmacology, Yıldırım Beyazıt University Medical Faculty, Ankara 06010, Turkey
| | - Aysegul Kucuk
- Department of Physiology, Kütahya Health Sciences University Medical Faculty, Kütahya 43100, Turkey
| | - Fazli Polat
- Department of Urology, Gazi University Medical Faculty, Ankara 06510, Turkey
| | - Mustafa Kavutcu
- Department of Biochemistry, Gazi University Medical Faculty, Ankara 06510, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Gazi University Medical Faculty, Ankara 06510, Turkey
| |
Collapse
|
6
|
Tvrda E, Peer R, Sikka SC, Agarwal A. Iron and copper in male reproduction: a double-edged sword. J Assist Reprod Genet 2015; 32:3-16. [PMID: 25245929 PMCID: PMC4294866 DOI: 10.1007/s10815-014-0344-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/09/2014] [Indexed: 01/12/2023] Open
Abstract
Iron and copper are essential trace nutrients playing important roles in general health and fertility. However, both elements are highly toxic when accumulating in large quantities. Their direct or indirect impact on the structure and function of male gonads and gametes is not completely understood yet. Excess or deficiency of either element may lead to defective spermatogenesis, reduced libido, and oxidative damage to the testicular tissue and spermatozoa, ultimately leading to fertility impairment. This review will detail the complex information currently available on the dual roles iron and copper play in male reproduction.
Collapse
Affiliation(s)
- Eva Tvrda
- />Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
- />Department of Animal Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Rohan Peer
- />Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
| | - Suresh C. Sikka
- />Department of Urology, Tulane University School of Medicine, New Orleans, LA USA
| | - Ashok Agarwal
- />Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
7
|
An association study of HFE gene mutation with idiopathic male infertility in the Chinese Han population. Asian J Androl 2012; 14:599-603. [PMID: 22504868 DOI: 10.1038/aja.2012.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the haemochromatosis gene (HFE) influence iron status in the general population of Northern Europe, and excess iron is associated with the impairment of spermatogenesis. The aim of this study is to investigate the association between three mutations (C282Y, H63D and S65C) in the HFE gene with idiopathic male infertility in the Chinese Han population. Two groups of Chinese men were recruited: 444 infertile men (including 169 with idiopathic azoospermia) and 423 controls with proven fertility. The HFE gene was detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The experimental results demonstrated that no C282Y or S65C mutations were detected. Idiopathic male infertility was not significantly associated with heterozygous H63D mutation (odds ratio=0.801, 95% confidence interval=0.452-1.421, χ(2)=0.577, P=0.448). The H63D mutation frequency did not correlate significantly with the serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) levels in infertile men (P=0.896, P=0.404 and P=0.05, respectively). Our data suggest that the HFE H63D mutation is not associated with idiopathic male reproductive dysfunction.
Collapse
|
8
|
Massart A, Lissens W, Tournaye H, Stouffs K. Genetic causes of spermatogenic failure. Asian J Androl 2012; 14:40-8. [PMID: 22138898 PMCID: PMC3735159 DOI: 10.1038/aja.2011.67] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/01/2011] [Accepted: 08/11/2011] [Indexed: 01/16/2023] Open
Abstract
Approximately 10%-15% of couples are infertile, and a male factor is involved in almost half of these cases. This observation is due in part to defects in spermatogenesis, and the underlying causes, including genetic abnormalities, remain largely unknown. Until recently, the only genetic tests used in the diagnosis of male infertility were aimed at detecting the presence of microdeletions of the long arm of the Y chromosome and/or chromosomal abnormalities. Various other single-gene or polygenic defects have been proposed to be involved in male fertility. However, their causative effects often remain unproven. The recent evolution in the development of whole-genome-based techniques and the large-scale analysis of mouse models might help in this process. Through knockout mouse models, at least 388 genes have been shown to be associated with spermatogenesis in mice. However, problems often arise when translating this information from mice to humans.
Collapse
Affiliation(s)
- Annelien Massart
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|
9
|
Buretić-Tomljanović A, Vraneković J, Rubeša G, Jonovska S, Tomljanović D, Sendula-Jengić V, Kapović M, Ristić S. HFE mutations and transferrin C1/C2 polymorphism among Croatian patients with schizophrenia and schizoaffective disorder. Mol Biol Rep 2011; 39:2253-8. [PMID: 21643746 DOI: 10.1007/s11033-011-0974-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/26/2011] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the possible influence of hemochromatosis gene mutations (HFE-C282Y and H63D) and transferrin gene C2 variant (TF-C2) on susceptibility to schizophrenia and schizoaffective disorder and/or age at first hospital admission. Genotyping was performed in 176 Croatian patients and 171 non-psychiatric Croatian controls using PCR-RFLP analyses. Regarding the H63D mutation, allele and genotype frequencies reached boundary statistical significance. Other allele and genotype distributions were not significantly different between two groups. We also analyzed age at first hospital admission as a continuous variable using the non-parametric Mann-Whitney U-test and Kruskal-Wallis test, and multiple regression analysis. The results of these tests were negative. We concluded that investigated HFE mutations and TF-C2 variant are not high-risk genetic variants for schizophrenia/schizoaffective disorder in our population. Also our data do not support their impact on age at onset of the first psychotic symptoms.
Collapse
Affiliation(s)
- Alena Buretić-Tomljanović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ogorevc J, Dovc P, Kunej T. Comparative Genomics Approach to Identify Candidate Genetic Loci for Male Fertility. Reprod Domest Anim 2011; 46:229-39. [DOI: 10.1111/j.1439-0531.2010.01648.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Floreani A, Navaglia F, Rizzotto ER, Basso D, Chiaramonte M, Padoan A, Petridis I, Cazzagon N, Testa R, Marra M, Plebani M. Mass spectrometry measurement of plasma hepcidin for the prediction of iron overload. Clin Chem Lab Med 2010; 49:197-206. [PMID: 21143008 DOI: 10.1515/cclm.2011.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Hepcidin has emerged as the primary regulator of iron homeostasis. Previous studies on assessing urinary hepcidin are limited. We developed a method for quantifying hepcidin-25 (Hep-25) in plasma using surface-enhanced laser-desorption-ionization time-of-flight mass spectrometry (SELDI-TOF/MS) and a 25-AA peptide as reference standard. The aims of the study were 1) to assess the performance of this method in different conditions of iron metabolism disorders; 2) to assess the diagnostic validity of non-invasive serum biomarkers in the identification of iron overload. METHODS Validation of the method was performed in 10 patients with type I hemochromatosis (HE) and in 177 subjects previously enrolled in a general population epidemiological study. Among the latter group, 17 had non-alcoholic fatty liver disease, 10 had chronic hepatitis C, and 150 subjects had normal ultrasound, normal liver function tests (LFTs), an alcohol intake < 20 g ethanol/day and were negative for the C282Y mutation. The following biomarkers were assayed in each case: plasma Hep-25, C282Y and H63D mutations of the HFE gene; serum iron, ferritin (SF), transferrin saturation, transaminases, γ-glutamyltransferase (GGT), glucose, insulin, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol and triglycerides. RESULTS Plasma Hep-25 concentrations were higher in HCV+ patients (26.3 ± 7.2 nmol/L) than in controls, and correlated positively with SF (p < 0.001). H63D heterozygous subjects revealed a pattern of iron overload that was significantly higher than H63D wild type subjects. Analyzing the data with the Biomarker Pattern 5.0.2. software to identify the most significant biomarkers for discriminating between HE cases and controls allowed us to produce an algorithm with four terminal nodes, which included glucose > 4.8 mmol/L and Hep-25/SF ratio ≤ 6.6 as the main splitters. These variables enabled the correct diagnosis of HE with 100% sensitivity, 93% specificity and an area under the receiver operating characteristic (ROC) curve of 0.993. CONCLUSIONS Our plasma Hep-25 mass spectrometry method yields measurements that reflect pathological and genetic influences; simple non-invasive biomarkers (Hep-25/SF ratio and glucose) can predict the presence of HE.
Collapse
Affiliation(s)
- Annarosa Floreani
- Department of Surgical and Gastroenterological Sciences, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang A, Park SK, Wright RO, Weisskopf MG, Mukherjee B, Nie H, Sparrow D, Hu H. HFE H63D polymorphism as a modifier of the effect of cumulative lead exposure on pulse pressure: the Normative Aging Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1261-6. [PMID: 20478760 PMCID: PMC2944087 DOI: 10.1289/ehp.1002251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 05/14/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cumulative lead exposure is associated with a widened pulse pressure (PP; the -difference between systolic and diastolic blood pressure), a marker of arterial stiffness and a predictor of cardiovascular disease. Polymorphisms in the hemochromatosis gene (HFE) have been shown to modify the impact of cumulative lead exposure on measures of adult cognition and cardiac function. OBJECTIVES We examined whether the HFE mutations modify the impact of lead on PP in -community-dwelling older men. METHODS We examined 619 participants with a total of 1,148 observations of PP from a substudy of bone lead levels (a measure of cumulative exposure, measured by in vivo K-shell X-ray fluorescence) and health in the Normative Aging Study between 1991 and 2001. Linear mixed-effects regression models with random intercepts were constructed. RESULTS Of the 619 subjects, 138 and 72 carried the HFE H63D and C282Y variants, respectively. After adjusting for age; education; alcohol intake; smoking; daily intakes of calcium, sodium, and potassium; total calories; family history of hypertension; diabetes; height; heart rate; high-density lipoprotein (HDL); total cholesterol:HDL ratio; and waist circumference, baseline bone lead levels were associated with steeper increases in PP in men with at least one H63D allele (p-interaction = 0.03 for tibia and 0.02 for patella) compared with men with only the wild types or C282Y variant. CONCLUSIONS The HFE H63D polymorphism, but not the C282Y mutation, appears to enhance susceptibility to the deleterious impact of cumulative lead on PP, possibly via prooxidative or pro-inflammatory mechanisms.
Collapse
Affiliation(s)
- Aimin Zhang
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | |
Collapse
|