1
|
Bär D, Konetschny B, Kulik A, Xu H, Paccagnella D, Beller P, Ziemert N, Dickschat JS, Gust B. Origin of the 3-methylglutaryl moiety in caprazamycin biosynthesis. Microb Cell Fact 2022; 21:232. [PMID: 36335365 PMCID: PMC9636800 DOI: 10.1186/s12934-022-01955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Caprazamycins are liponucleoside antibiotics showing bioactivity against Gram-positive bacteria including clinically relevant Mycobacterium tuberculosis by targeting the bacterial MraY-translocase. Their chemical structure contains a unique 3-methylglutaryl moiety which they only share with the closely related liposidomycins. Although the biosynthesis of caprazamycin is understood to some extent, the origin of 3-methylglutaryl-CoA for caprazamycin biosynthesis remains elusive. RESULTS In this work, we demonstrate two pathways of the heterologous producer Streptomyces coelicolor M1154 capable of supplying 3-methylglutaryl-CoA: One is encoded by the caprazamycin gene cluster itself including the 3-hydroxy-3-methylglutaryl-CoA synthase Cpz5. The second pathway is part of primary metabolism of the host cell and encodes for the leucine/isovalerate utilization pathway (Liu-pathway). We could identify the liu cluster in S. coelicolor M1154 and gene deletions showed that the intermediate 3-methylglutaconyl-CoA is used for 3-methylglutaryl-CoA biosynthesis. This is the first report of this intermediate being hijacked for secondary metabolite biosynthesis. Furthermore, Cpz20 and Cpz25 from the caprazamycin gene cluster were found to be part of a common route after both individual pathways are merged together. CONCLUSIONS The unique 3-methylglutaryl moiety in caprazamycin originates both from the caprazamycin gene cluster and the leucine/isovalerate utilization pathway of the heterologous host. Our study enhanced the knowledge on the caprazamycin biosynthesis and points out the importance of primary metabolism of the host cell for biosynthesis of natural products.
Collapse
Affiliation(s)
- Daniel Bär
- Department of Pharmaceutical Biology, Eberhard-Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Benjamin Konetschny
- Department of Pharmaceutical Biology, Eberhard-Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Andreas Kulik
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls University Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Davide Paccagnella
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Bioinformatics and Medical Informatics, Eberhard-Karls University Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Patrick Beller
- Department of Pharmaceutical Biology, Eberhard-Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Bioinformatics and Medical Informatics, Eberhard-Karls University Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bertolt Gust
- Department of Pharmaceutical Biology, Eberhard-Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Hemmerlin A, Huchelmann A, Tritsch D, Schaller H, Bach TJ. The specific molecular architecture of plant 3-hydroxy-3-methylglutaryl-CoA lyase. J Biol Chem 2019; 294:16186-16197. [PMID: 31515272 DOI: 10.1074/jbc.ra119.008839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/20/2019] [Indexed: 11/06/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase (HMGL) is involved in branched-chain amino acid catabolism leading to acetyl-CoA production. Here, using bioinformatics analyses and protein sequence alignments, we found that in Arabidopsis thaliana a single gene encodes two HMGL isoforms differing in size (51 kDa, HMGL51 and 46 kDa, HMGL46). Similar to animal HMGLs, both isoforms comprised a C-terminal type 1 peroxisomal retention motif, and HMGL51 contained a mitochondrial leader peptide. We observed that only a shortened HMGL (35 kDa, HMGL35) is conserved across all kingdoms of life. Most notably, all plant HMGLs also contained a specific N-terminal extension (P100) that is located between the N-terminal mitochondrial targeting sequence TP35 and HMGL35 and is absent in bacteria and other eukaryotes. Interestingly, using HMGL enzyme assays, we found that rather than HMGL46, homodimeric recombinant HMGL35 is the active enzyme catalyzing acetyl-CoA and acetoacetate synthesis when incubated with (S)-HMG-CoA. This suggested that the plant-specific P100 peptide may inactivate HMGL according to specific physiological requirements. Therefore, we investigated whether the P100 peptide in HMGL46 alters its activity, possibly by modifying the HMGL46 structure. We found that induced expression of a cytosolic HMGL35 version in A. thaliana delays germination and leads to rapid wilting and chlorosis in mature plants. Our results suggest that in plants, P100-mediated HMGL inactivation outside of peroxisomes or mitochondria is crucial, protecting against potentially cytotoxic effects of HMGL activity while it transits to these organelles.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Alexandre Huchelmann
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Denis Tritsch
- Institut de Chimie de Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg, France
| | - Hubert Schaller
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Thomas J Bach
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
3
|
Díaz-Pérez AL, Núñez C, Meza Carmen V, Campos-García J. The expression of the genes involved in leucine catabolism of Pseudomonas aeruginosa is controlled by the transcriptional regulator LiuR and by the CbrAB/Crc system. Res Microbiol 2018; 169:324-334. [PMID: 29787835 DOI: 10.1016/j.resmic.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa metabolizes leucine through the leucine/isovalerate utilization pathway, whose enzymes are encoded in the liuRABCDE gene cluster (liu). In this study, we investigated the role of the LiuR protein in the liu cluster regulation. Our results indicated that liu expression is regulated at the transcriptional level by LiuR. Mobility shift assays using purified recombinant His-tagged LiuR showed that it was able to bind at the promoter region of liuR, in a dose-dependent manner. Results revealed that expression of the liu operon is subjected to carbon catabolite repression control (CCR); protein LiuD was strongly expressed in the presence of leucine, but it was repressed in the presence of glucose or succinate. Furthermore, this CCR control was dependent on LiuR as in the liuR- mutant the LiuD protein was strongly expressed in all the carbon sources tested. In agreement with this result, in the absence of the Crc protein, LiuD was expressed independently of the carbon source used, whereas in a cbrB- mutant its expression was severely impaired. The results indicated that the liu cluster is subjected to a coordinated transcriptional and translational regulation by the LiuR repressor and by the CbrAB/Crc system, respectively, in response to the available carbon source.
Collapse
Affiliation(s)
- Alma Laura Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58030, Mexico.
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Victor Meza Carmen
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58030, Mexico.
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58030, Mexico.
| |
Collapse
|
4
|
Marmulla R, Harder J. Microbial monoterpene transformations-a review. Front Microbiol 2014; 5:346. [PMID: 25076942 PMCID: PMC4097962 DOI: 10.3389/fmicb.2014.00346] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/21/2014] [Indexed: 11/17/2022] Open
Abstract
Isoprene and monoterpenes constitute a significant fraction of new plant biomass. Emission rates into the atmosphere alone are estimated to be over 500 Tg per year. These natural hydrocarbons are mineralized annually in similar quantities. In the atmosphere, abiotic photochemical processes cause lifetimes of minutes to hours. Microorganisms encounter isoprene, monoterpenes, and other volatiles of plant origin while living in and on plants, in the soil and in aquatic habitats. Below toxic concentrations, the compounds can serve as carbon and energy source for aerobic and anaerobic microorganisms. Besides these catabolic reactions, transformations may occur as part of detoxification processes. Initial transformations of monoterpenes involve the introduction of functional groups, oxidation reactions, and molecular rearrangements catalyzed by various enzymes. Pseudomonas and Rhodococcus strains and members of the genera Castellaniella and Thauera have become model organisms for the elucidation of biochemical pathways. We review here the enzymes and their genes together with microorganisms known for a monoterpene metabolism, with a strong focus on microorganisms that are taxonomically validly described and currently available from culture collections. Metagenomes of microbiomes with a monoterpene-rich diet confirmed the ecological relevance of monoterpene metabolism and raised concerns on the quality of our insights based on the limited biochemical knowledge.
Collapse
Affiliation(s)
- Robert Marmulla
- Department of Microbiology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Jens Harder
- Department of Microbiology, Max Planck Institute for Marine Microbiology Bremen, Germany
| |
Collapse
|
5
|
Grishko VV, Nogovitsina YM, Ivshina IB. Bacterial transformation of terpenoids. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n04abeh004396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Catabolism of citronellol and related acyclic terpenoids in pseudomonads. Appl Microbiol Biotechnol 2010; 87:859-69. [DOI: 10.1007/s00253-010-2644-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
|
7
|
Molecular characterization of a phenylalanine ammonia-lyase gene (BoPAL1) from Bambusa oldhamii. Mol Biol Rep 2010; 38:283-90. [DOI: 10.1007/s11033-010-0106-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
|