1
|
Comparative transcriptome analysis of Rheum australe, an endangered medicinal herb, growing in its natural habitat and those grown in controlled growth chambers. Sci Rep 2021; 11:3702. [PMID: 33580100 PMCID: PMC7881009 DOI: 10.1038/s41598-020-79020-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/02/2020] [Indexed: 01/30/2023] Open
Abstract
Rheum australe is an endangered medicinal herb of high altitude alpine region of Himalayas and is known to possess anti-cancerous properties. Unlike many herbs of the region, R. australe has broad leaves. The species thrives well under the environmental extremes in its niche habitat, therefore an understanding of transcriptome of R. australe to environmental cues was of significance. Since, temperature is one of the major environmental variables in the niche of R. australe, transcriptome was studied in the species growing in natural habitat and those grown in growth chambers maintained at 4 °C and 25 °C to understand genes associated with different temperatures. A total of 39,136 primarily assembled transcripts were obtained from 10,17,74,336 clean read, and 21,303 unigenes could match to public databases. An analysis of transcriptome by fragments per kilobase of transcript per million, followed by validation through qRT-PCR showed 22.4% up- and 22.5% down-regulated common differentially expressed genes in the species growing under natural habitat and at 4 °C as compared to those at 25 °C. These genes largely belonged to signaling pathway, transporters, secondary metabolites, phytohormones, and those associated with cellular protection, suggesting their importance in imparting adaptive advantage to R. australe in its niche.
Collapse
|
2
|
Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:1387. [PMID: 30349547 PMCID: PMC6187979 DOI: 10.3389/fpls.2018.01387] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/31/2018] [Indexed: 05/02/2023]
Abstract
Mitogen-activated protein kinase (MAPK) modules play key roles in the transduction of environmental and developmental signals through phosphorylation of downstream signaling targets, including other kinases, enzymes, cytoskeletal proteins or transcription factors, in all eukaryotic cells. A typical MAPK cascade consists of at least three sequentially acting serine/threonine kinases, a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK) and finally, the MAP kinase (MAPK) itself, with each phosphorylating, and hence activating, the next kinase in the cascade. Recent advances in our understanding of hormone signaling pathways have led to the discovery of new regulatory systems. In particular, this research has revealed the emerging role of crosstalk between the protein components of various signaling pathways and the involvement of this crosstalk in multiple cellular processes. Here we provide an overview of current models and mechanisms of hormone signaling with a special emphasis on the role of MAPKs in cell signaling networks. One-sentence summary: In this review we highlight the mechanisms of crosstalk between MAPK cascades and plant hormone signaling pathways and summarize recent findings on MAPK regulation and function in various cellular processes.
Collapse
Affiliation(s)
- Przemysław Jagodzik
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Tajdel-Zielinska
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agata Ciesla
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Marczak
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agnieszka Ludwikow
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Agnieszka Ludwikow,
| |
Collapse
|
3
|
Zhang J, Zou D, Li Y, Sun X, Wang NN, Gong SY, Zheng Y, Li XB. GhMPK17, a cotton mitogen-activated protein kinase, is involved in plant response to high salinity and osmotic stresses and ABA signaling. PLoS One 2014; 9:e95642. [PMID: 24743296 PMCID: PMC3990703 DOI: 10.1371/journal.pone.0095642] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in mediating biotic and abiotic stress responses. Cotton (Gossypium hirsutum) is the most important textile crop in the world, and often encounters abiotic stress during its growth seasons. In this study, a gene encoding a mitogen-activated protein kinase (MAPK) was isolated from cotton, and designated as GhMPK17. The open reading frame (ORF) of GhMPK17 gene is 1494 bp in length and encodes a protein with 497 amino acids. Quantitative RT-PCR analysis indicated that GhMPK17 expression was up-regulated in cotton under NaCl, mannitol and ABA treatments. The transgenic Arabidopsis plants expressing GhMPK17 gene showed higher seed germination, root elongation and cotyledon greening/expansion rates than those of the wild type on MS medium containing NaCl, mannitol and exogenous ABA, suggesting that overexpression of GhMPK17 in Arabidopsis increased plant ABA-insensitivity, and enhanced plant tolerance to salt and osmotic stresses. Furthermore, overexpression of GhMPK17 in Arabidopsis reduced H2O2 level and altered expression of ABA- and abiotic stress-related genes in the transgenic plants. Collectively, these data suggested that GhMPK17 gene may be involved in plant response to high salinity and osmotic stresses and ABA signaling.
Collapse
Affiliation(s)
- Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Dan Zou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiang Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Na-Na Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
4
|
Danquah A, de Zelicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 2013; 32:40-52. [PMID: 24091291 DOI: 10.1016/j.biotechadv.2013.09.006] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/14/2013] [Accepted: 09/20/2013] [Indexed: 01/12/2023]
Abstract
As sessile organisms, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. Among the evolutionarily conserved pathways, the ABA (abscisic acid) signaling pathway has been identified as a central regulator of abiotic stress response in plants, triggering major changes in gene expression and adaptive physiological responses. ABA induces protein kinases of the SnRK family to mediate a number of its responses. Recently, MAPK (mitogen activated protein kinase) cascades have also been shown to be implicated in ABA signaling. Therefore, besides discussing the role of ABA in abiotic stress signaling, we will also summarize the evidence for a role of MAPKs in the context of abiotic stress and ABA signaling.
Collapse
Affiliation(s)
- Agyemang Danquah
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Axel de Zelicourt
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Jean Colcombet
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Heribert Hirt
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| |
Collapse
|
5
|
Liu Y. Roles of mitogen-activated protein kinase cascades in ABA signaling. PLANT CELL REPORTS 2012; 31:1-12. [PMID: 21870109 DOI: 10.1007/s00299-011-1130-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 07/23/2011] [Accepted: 07/23/2011] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA) is a universal hormone in higher plants and plays a major role in various aspects of plant stress, growth, and development. Mitogen-activated protein kinase (MAPK) cascades are key signaling modules for responding to various extracellular stimuli in plants. The available data suggest that MAPK cascades are involved in some ABA responses, including antioxidant defense, guard cell signaling, and seed germination. Some MAPK phosphatases have also been demonstrated to be implicated in ABA responses. The goal of this review is to piece together the findings concerning MAPK cascades in ABA signaling. Questions and further perspectives of the roles played by MAPK cascades in ABA signaling are also furnished.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Bhardwaj PK, Kaur J, Sobti RC, Kumar S. Identification and expression analysis of CjLTI, a novel low temperature responsive gene from Caragana jubata. Mol Biol Rep 2011; 39:3197-202. [PMID: 21701826 DOI: 10.1007/s11033-011-1086-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 06/11/2011] [Indexed: 02/05/2023]
Abstract
Using rapid amplification of cDNA ends, a full length cDNA (CjLTI) was cloned from apical buds of Caragana jubata, a plant species that grows under extreme cold. The cDNA obtained was 573 bp long consisting of an open reading frame of 351 bp encoding 116 amino acids. Homology analysis did not exhibit significant similarity with any sequence at NCBI database, therefore it was deduced as a novel gene. Secondary structure analysis suggested that the deduced CjLTI contained 25.86% α-helices, 4.31% β-turns, 6.90% extended strands, and 62.93% random coils. The hydropathy profile suggested CjLTI to be a hydrophobic protein having characteristic features of signal peptides at N-terminus. The gene exhibited down-regulation at 5 min of exposure to low temperature (LT, 4 ± 3 °C) followed by a strong up-regulation after 15 min and onwards. Methyl jasmonate (MJ) lead to up-regulation of CjLTI starting at 5 min onwards. The gene exhibited up- and down-regulation of expression pattern in response to abscisic acid (ABA) and salicylic acid (SA). Mild drought stress slightly up-regulated gene expression and at severe drought (up to 115% reduction in leaf water potential) slight down-regulation of gene expression was observed. These results suggested CjLTI to be a LT responsive gene wherein MJ, ABA and SA pathways might be involved in regulating the gene expression.
Collapse
Affiliation(s)
- Pardeep Kumar Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, PO Box 6, Palampur, HP 176061, India
| | | | | | | |
Collapse
|
7
|
Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj PK, Rani A, Singh RS, Raizada J, Singh K, Kumar S. An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res Notes 2011; 4:85. [PMID: 21443767 PMCID: PMC3079660 DOI: 10.1186/1756-0500-4-85] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 03/28/2011] [Indexed: 11/30/2022] Open
Abstract
Background Secondary metabolites are reported to interfere with the isolation of RNA particularly with the recipes that use guanidinium-based salt. Such interference was observed in isolation of RNA with medicinal plants rheum (Rheum australe) and arnebia (Arnebia euchroma). A rapid and less cumbersome system for isolation of RNA was essential to facilitate any study related to gene expression. Findings An RNA isolation system free of guanidinium salt was developed that successfully isolated RNA from rheum and arnebia. The method took about 45 min and was successfully evaluated on twenty one tissues with varied secondary metabolites. The A260/280 ratio ranged between 1.8 - 2.0 with distinct 28 S and 18 S rRNA bands visible on a formaldehyde-agarose gel. Conclusions The present manuscript describes a rapid protocol for isolation of RNA, which works well with all the tissues examined so far. The remarkable feature was the success in isolation of RNA with those tissues, wherein the most commonly used methods failed. Isolated RNA was amenable to downstream applications such as reverse transcription-polymerase chain reaction (RT-PCR), differential display (DD), suppression subtractive hybridization (SSH) library construction, and northern hybridization.
Collapse
Affiliation(s)
- Sanjay Ghawana
- Biotechnology Division, Institute of Himalayan Bioresource Technology (CSIR), Palampur-176 061, Himachal Pradesh, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sharma PD, Singh N, Ahuja PS, Reddy TV. Abscisic acid response element binding factor 1 is required for establishment of Arabidopsis seedlings during winter. Mol Biol Rep 2010; 38:5147-59. [PMID: 21181499 DOI: 10.1007/s11033-010-0664-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/07/2010] [Indexed: 01/02/2023]
Abstract
Abscisic acid (ABA) plays a crucial role in abiotic stress response apart from its influence on growth and development of a plant. Our studies on abscisic acid response element binding factor 1 (ABF1) gene in Arabidopsis demonstrate that it is required for seedling establishment during winter. ABF1 is also involved in regulating seed dormancy and seed germination to some extent. Analysis of transcriptional activity of ABF1 promoter reveals that ABF1 expresses specifically in trichomes of young leaves and constitutively in cotyledons, roots, older leaves and flowers. The expression is induced upon exposure to ABA, cold and heat. The alignment of cDNAs of ABF1 (At1g49720) and At1g49730 (encodes a protein kinase of unknown function), reveals an overlap of 88 bp at their 3' UTR region suggesting that they can potentially form natural cis-antisense mRNAs pair in a tail-to-tail manner. Analysis by Genevestigator microarray stress response viewer further supports the regulatory role of these genes. An inverse proportion is observed in the transcription the two loci in number of stress responses. The abf1 mutants do not show any seedling establishment defects when grown under standard growth conditions. The mutant seedlings exhibit growth defects during winter in the western Himalayan region. Our study also signifies the importance of functional analysis for mutant phenotypes in natural habitats by reverse genetic approaches, in order to identify specific function of particular gene/s whose expression level is altered upon exposure to changes in environmental cues such as temperature and light.
Collapse
Affiliation(s)
- Pitamber Dutt Sharma
- Biotechnology Division, Institute of Himalayan Bioresource Technology-CSIR, Palampur 176061, Himachal Pradesh, India
| | | | | | | |
Collapse
|
9
|
Bhardwaj PK, Ahuja PS, Kumar S. Characterization of gene expression of QM from Caragana jubata, a plant species that grows under extreme cold. Mol Biol Rep 2010; 37:1003-10. [PMID: 19757181 DOI: 10.1007/s11033-009-9791-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Caragana [Caragana jubata (Pall.) Poir] is a temperate plant that thrives well under extremes of cold in high altitude of Himalaya and hence the plant is expected to be a source of genes that might play an important role in tolerance to low temperature (LT). In order to identify LT inducible gene(s), differential display of mRNA (DD) was performed using the apical buds growing under snow as well as growing in the near vicinity without snow, and a LT inducible QM gene (CjQM) homologue was identified. Realizing the importance of QM gene (which encodes human Wilms' tumor suppressor QM protein) in aggregation of 40 and 60S ribosomal subunit and that not much has been reported on this gene in plant systems in relation to its relationship with LT, full length cDNA of CjQM was cloned through rapid amplification of cDNA ends. The gene (977 bp), encoded by small gene family, had an open reading frame of 651 bp and was found to be intronless. The gene exhibited up-regulation within 20 min of exposure to LT and abscisic acid (ABA), but no significant change in gene expression was observed in response to drought stress (DS), salicylic acid (SA) and methyl jasmonate (MJ) application. Up-regulation of CjQM was obtained in the tissues growing in situ under snow. Non-responsiveness of CjQM towards DS, SA and MJ, but up-regulation in response to LT and ABA suggested a specific regulation of the gene in Caragana under varied cues.
Collapse
Affiliation(s)
- Pardeep Kumar Bhardwaj
- Biotechnology Division, Institute of Himalayan Bioresource, Technology, Council of Scientific and Industrial Research, P.O. Box 6, Palampur, Himachal Pradesh 176061, India
| | | | | |
Collapse
|
10
|
Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep 2010; 37:4067-73. [DOI: 10.1007/s11033-010-0066-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 03/05/2010] [Indexed: 01/10/2023]
|