1
|
Wang Z, Ding C, Tong Z, Yang L, Xiang S, Liang Y. Characterization and expression analysis of a thaumatin-like protein PpTLP1 from ground cherry Physalis pubescens. Int J Biol Macromol 2024; 254:127731. [PMID: 38287567 DOI: 10.1016/j.ijbiomac.2023.127731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Ground cherry, Physalis pubescens, is mainly cultivated as a fruit worldwide and popularly used as a food supplement and traditional Chinese medicine. Plants are challenged by external environmental stress and can initiate resistance to the stress through the regulation of pathogenesis-related (PR) proteins. Among PR proteins, PR-5, a thaumatin-like protein (TLP), was identified in many plants and found to be able to enhance stress resistance. However, PR-5 in ground cherry is not characterized and its expression is yet to be understood. In this study, a PR-5 protein PpTLP1 in P. pubescens was firstly identified. Analysis of the amino acid sequences revealed that PpTLP1 was highly similar to PR-NP24 identified in tomato with a difference in only one amino acid. Expression analysis indicated that the PpTLP1 gene was highly expressed in leaf while the PpTLP1 protein was tissue-specifically accumulated in cherry exocarp. Furthermore, the down-regulation of PpTLP1 in ground cherry was induced by NaCl treatment while the up-regulation was promoted by the infection of Sclerotinia sclerotiorum and Botrytis cinerea. This study will provide a new plant resource containing a TLP in Physalis genus and a novel insight for the improvement of postharvest management of ground cherry and other Solanaceae plants.
Collapse
Affiliation(s)
- Zehao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chengsong Ding
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhipeng Tong
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Liuliu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Shibo Xiang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Wang X, Li J, Guo X, Ma Y, Qiao Q, Guo J. PlWRKY13: A Transcription Factor Involved in Abiotic and Biotic Stress Responses in Paeonia lactiflora. Int J Mol Sci 2019; 20:ijms20235953. [PMID: 31779255 PMCID: PMC6928655 DOI: 10.3390/ijms20235953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 11/16/2022] Open
Abstract
Many members of the WRKY family regulate plant growth and development. Recent studies have shown that members of the WRKY family, specifically WRKY13, play various roles in the regulation of plant stress resistance. To study the function of WRKY family members in peony, the PlWRKY13 gene (KY271095) was cloned from peony leaves. Sequence analysis and subcellular localization results revealed that PlWRKY13 has no introns, belongs to the type IIc subgroup of the WRKY family, and functions in the nucleus. The expression pattern of PlWRKY13 was analysed via real-time quantitative RT-PCR (qRT-PCR), which showed that the expression of PlWRKY13 was induced by four types of abiotic stress, low-temperature, high-temperature, waterlogging and salt stress, and was positively upregulated in response to these stresses. In addition, the expression of PlWRKY13 tended to first decrease and then increase after infection with Alternaria tenuissima. Virus-induced gene silencing (VIGS) technology was used to explore the function of PlWRKY13 in the resistance of Paeonia lactiflora to fungal infection further, and the results showed that PlWRKY13-silenced plants displayed increased sensitivity to A. tenuissima. The infection was more severe and the disease index (DI) significantly greater in the PlWRKY13-silenced plants than in the control plants, and the expression of pathogenesis-related (PR) genes was also significantly altered in the PlWRKY13-silenced plants compared with the control plants. The contents of the endogenous hormones jasmonic acid (JA) and salicylic acid (SA) were measured, and the results showed that the JA content increased gradually after infection with A. tenuissima and that JA may play an active role in the resistance of P. lactiflora to pathogen infection, while the SA content decreased after PlWRKY13 silencing. The contents of the two hormones decreased overall, suggesting that they are related to the transcription of PlWRKY13 and that PlWRKY13 may be involved in the disease-resistance pathway mediated by JA and SA. In summary, the results of our study showed that PlWRKY13 expression was induced by stress and had a positive effect on the resistance of P. lactiflora to fungal infection.
Collapse
Affiliation(s)
- Xue Wang
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, Tai′ an 271018, China; (X.W.); (J.L.); (J.G.)
| | - Junjie Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, Tai′ an 271018, China; (X.W.); (J.L.); (J.G.)
| | - Xianfeng Guo
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, Tai′ an 271018, China; (X.W.); (J.L.); (J.G.)
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, Tai′ an 271018, China
- Correspondence: (X.G.); (Y.M.)
| | - Yan Ma
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, Tai′ an 271018, China; (X.W.); (J.L.); (J.G.)
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, Tai′ an 271018, China
- Correspondence: (X.G.); (Y.M.)
| | - Qian Qiao
- Characteristic fruit tree research office, Shandong Institute of Pomology, Tai′an 271000, China;
| | - Jing Guo
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, Tai′ an 271018, China; (X.W.); (J.L.); (J.G.)
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, Tai′ an 271018, China
| |
Collapse
|
3
|
Zhai X, Kong Q, An P, Ren X. The Function and Mechanism of Pathogenesis-Related 5 Protein Resistance in Cherry Tomato in Response to Alternaria alternata. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2018.1481088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xin Zhai
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Qingjun Kong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Peipei An
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Xueyan Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci Rep 2016; 6:25340. [PMID: 27150014 PMCID: PMC4858651 DOI: 10.1038/srep25340] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/13/2016] [Indexed: 11/12/2022] Open
Abstract
Plant often responds to fungal pathogens by expressing a group of proteins known as pathogenesis-related proteins (PRs). The expression of PR is mediated through pathogen-induced signal-transduction pathways that are fine-tuned by phytohormones such as methyl jasmonate (MeJA). Here, we report functional characterization of an Ocimum basilicum PR5 family member (ObTLP1) that was identified from a MeJA-responsive expression sequence tag collection. ObTLP1 encodes a 226 amino acid polypeptide that showed sequence and structural similarities with a sweet-tasting protein thaumatin of Thaumatococcus danielli and also with a stress-responsive protein osmotin of Nicotiana tabacum. The expression of ObTLP1 in O. basilicum was found to be organ-preferential under unstressed condition, and responsive to biotic and abiotic stresses, and multiple phytohormone elicitations. Bacterially-expressed recombinant ObTLP1 inhibited mycelial growth of the phytopathogenic fungi, Scleretonia sclerotiorum and Botrytis cinerea; thereby, suggesting its antifungal activity. Ectopic expression of ObTLP1 in Arabidopsis led to enhanced tolerance to S. sclerotiorum and B. cinerea infections, and also to dehydration and salt stress. Moreover, induced expression of the defense marker genes suggested up-regulation of the defense-response pathways in ObTLP1-expressing Arabidopsis upon fungal challenge. Thus, ObTLP1 might be useful for providing tolerance to the fungal pathogens and abiotic stresses in crops.
Collapse
|
5
|
Freitas CDT, Silva MZR, Bruno-Moreno F, Monteiro-Moreira ACO, Moreira RA, Ramos MV. New constitutive latex osmotin-like proteins lacking antifungal activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:45-52. [PMID: 26231325 DOI: 10.1016/j.plaphy.2015.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/17/2015] [Accepted: 07/15/2015] [Indexed: 05/23/2023]
Abstract
Proteins that share similar primary sequences to the protein originally described in salt-stressed tobacco cells have been named osmotins. So far, only two osmotin-like proteins were purified and characterized of latex fluids. Osmotin from Carica papaya latex is an inducible protein lacking antifungal activity, whereas the Calotropis procera latex osmotin is a constitutive antifungal protein. To get additional insights into this subject, we investigated osmotins in latex fluids of five species. Two potential osmotin-like proteins in Cryptostegia grandiflora and Plumeria rubra latex were detected by immunological cross-reactivity with polyclonal antibodies produced against the C. procera latex osmotin (CpOsm) by ELISA, Dot Blot and Western Blot assays. Osmotin-like proteins were not detected in the latex of Thevetia peruviana, Himatanthus drasticus and healthy Carica papaya fruits. Later, the two new osmotin-like proteins were purified through immunoaffinity chromatography with anti-CpOsm immobilized antibodies. Worth noting the chromatographic efficiency allowed for the purification of the osmotin-like protein belonging to H. drasticus latex, which was not detectable by immunoassays. The identification of the purified proteins was confirmed after MS/MS analyses of their tryptic digests. It is concluded that the constitutive osmotin-like proteins reported here share structural similarities to CpOsm. However, unlike CpOsm, they did not exhibit antifungal activity against Fusarium solani and Colletotrichum gloeosporioides. These results suggest that osmotins of different latex sources may be involved in distinct physiological or defensive events.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, Ceará, CEP 60451-970, Brazil.
| | - Maria Z R Silva
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, Ceará, CEP 60451-970, Brazil
| | | | | | - Renato A Moreira
- Centro de Ciências da Saúde, Universidade de Fortaleza, Unifor, Fortaleza-CE, Brazil
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, Ceará, CEP 60451-970, Brazil.
| |
Collapse
|
6
|
Rather IA, Awasthi P, Mahajan V, Bedi YS, Vishwakarma RA, Gandhi SG. Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum. Gene 2014; 558:143-51. [PMID: 25550044 DOI: 10.1016/j.gene.2014.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/28/2014] [Accepted: 12/25/2014] [Indexed: 10/24/2022]
Abstract
Pathogenesis-related (PR) proteins are involved in biotic and abiotic stress responses of plants and are grouped into 17 families (PR-1 to PR-17). PR-5 family includes proteins related to thaumatin and osmotin, with several members possessing antimicrobial properties. In this study, a PR-5 gene showing a high degree of homology with osmotin-like protein was isolated from sweet basil (Ocimum basilicum L.). A complete open reading frame consisting of 675 nucleotides, coding for a precursor protein, was obtained by PCR amplification. Based on sequence comparisons with tobacco osmotin and other osmotin-like proteins (OLPs), this protein was named ObOLP. The predicted mature protein is 225 amino acids in length and contains 16 cysteine residues that may potentially form eight disulfide bonds, a signature common to most PR-5 proteins. Among the various abiotic stress treatments tested, including high salt, mechanical wounding and exogenous phytohormone/elicitor treatments; methyl jasmonate (MeJA) and mechanical wounding significantly induced the expression of ObOLP gene. The coding sequence of ObOLP was cloned and expressed in a bacterial host resulting in a 25kDa recombinant-HIS tagged protein, displaying antifungal activity. The ObOLP protein sequence appears to contain an N-terminal signal peptide with signatures of secretory pathway. Further, our experimental data shows that ObOLP expression is regulated transcriptionally and in silico analysis suggests that it may be post-transcriptionally and post-translationally regulated through microRNAs and post-translational protein modifications, respectively. This study appears to be the first report of isolation and characterization of osmotin-like protein gene from O. basilicum.
Collapse
Affiliation(s)
- Irshad Ahmad Rather
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
| | - Praveen Awasthi
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
| | - Vidushi Mahajan
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India
| | - Yashbir S Bedi
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India
| | - Ram A Vishwakarma
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India
| | - Sumit G Gandhi
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India.
| |
Collapse
|
7
|
Prasath D, El-Sharkawy I, Sherif S, Tiwary KS, Jayasankar S. Cloning and characterization of PR5 gene from Curcuma amada and Zingiber officinale in response to Ralstonia solanacearum infection. PLANT CELL REPORTS 2011; 30:1799-809. [PMID: 21594675 DOI: 10.1007/s00299-011-1087-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/18/2011] [Accepted: 05/06/2011] [Indexed: 05/30/2023]
Abstract
Ginger (Zingiber officinale Roscoe), is an important spice crop that is badly affected by Ralstonia solanacearum wilt. Ginger does not set seed and sexual recombination has never been reported. In spite of extensive search in its habitats, no resistance source to Ralstonia induced bacterial wilt, could be located in ginger. Curcuma amada Roxb. is a potential donor for bacterial wilt resistance to Z. officinale, if the exact mechanism of resistance is understood. Pathogenesis-related (PR)-5 proteins are a family of proteins that are induced by different phytopathogens in many plants and share significant sequence similarity with thaumatin. Two putative PR5 genes, CaPR5 and ZoPR5, were amplified from C. amada and ginger, which encode precursor proteins of 227 and 224 amino acid residues, respectively, and share high homology with a number of other PR5 genes. The secondary and three-dimensional structure comparison did not reveal any striking differences between these two proteins. The expression of Ca and ZoPR5s under R. solanacearum inoculation was analyzed at different time points using quantitative real-time PCR (qRT-PCR). Our results reveal that CaPR5 is readily induced by the bacterium in C. amada, while ZoPR5 induction was very weak and slow in ginger. These results suggest that the CaPR5 could play a role in the molecular defense response of C. amada to pathogen attack. This is the first report of the isolation of PR5 gene from the C. amada and Z. officinale. Promoter analysis indicates the presence of a silencing element binding factor in ZoPR5-promoter, but not in CaPR5. Prospective promoter elements, such as GT-1 box and TGTCA, implicated as being positive regulatory elements for expression of PR proteins, occur in the 5'-flanking sequences of the CaPR5. Transient GUS expression study confirms its action with a weaker GUS expression in ginger, indicating that the PR5 expression may be controlled in the promoter.
Collapse
Affiliation(s)
- D Prasath
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Ave. N., P.O. Box 7000, Vineland Station, ON, L0R 2E0, Canada
| | | | | | | | | |
Collapse
|