1
|
Álvarez B, Revilla C, Moreno S, Jiménez-Marín Á, Ramos E, Martínez de la Riva P, Poderoso T, Garrido JJ, Ezquerra Á, Domínguez J. CD9 expression in porcine blood CD4 + T cells delineates two subsets with phenotypic characteristics of central and effector memory cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104431. [PMID: 35526640 DOI: 10.1016/j.dci.2022.104431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
In this report, we describe the characterization of a new monoclonal antibody, named 4H5CR4, against porcine CD9. Its use in combination with antibodies to CD4, CD8α, and 2E3 allows to distinguish at least five main CD4+ T cell subsets. Analysis on these subsets of CD45RA, CD27, CD29, CD95, CCR7, and SLA-DR markers depicts a progressive model of CD4+ T cell development. CD4+ 2E3+ CD8α- CD9- cells are the least differentiated population of naïve cells, whereas the CD4+ 2E3- CD8α+CD9+ and CD4+ 2E3- CD8α+ CD9- cells display phenotypic features of central and effector memory T helper cells, respectively. The latter subsets were able to produce IFN-γ after polyclonal activation with PMA/Ionomycin; however, in vitro virus-specific IFN-γ production of PBMCs collected at 38-44 days after pseudorabies virus vaccination was dominated by cells with a CD9+ phenotype. Therefore, CD9 appears to be a useful marker to investigate CD4+ T cell heterogeneity in swine.
Collapse
Affiliation(s)
- Belén Álvarez
- Departamento de Biotecnología, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, 28040, Spain
| | - Concepción Revilla
- Departamento de Biotecnología, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, 28040, Spain
| | - Sara Moreno
- Departamento de Biotecnología, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, 28040, Spain
| | - Ángeles Jiménez-Marín
- Grupo de Inmunogenómica y Patogénesis Molecular (IMIBIC), Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - Elena Ramos
- Departamento de Biotecnología, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, 28040, Spain
| | - Paloma Martínez de la Riva
- Departamento de Biotecnología, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, 28040, Spain
| | - Teresa Poderoso
- Departamento de Biotecnología, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, 28040, Spain
| | - Juan J Garrido
- Grupo de Inmunogenómica y Patogénesis Molecular (IMIBIC), Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain
| | - Ángel Ezquerra
- Departamento de Biotecnología, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, 28040, Spain.
| | - Javier Domínguez
- Departamento de Biotecnología, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, 28040, Spain
| |
Collapse
|
2
|
Milburn JV, Hoog AM, Winkler S, van Dongen KA, Leitner J, Patzl M, Saalmüller A, de Luca K, Steinberger P, Mair KH, Gerner W. Expression of CD9 on porcine lymphocytes and its relation to T cell differentiation and cytokine production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104080. [PMID: 33781781 DOI: 10.1016/j.dci.2021.104080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
In this work, we report on two novel monoclonal antibodies, specific for porcine CD9. CD9 is a tetraspanin that is expressed on a wide variety of cells. We phenotyped porcine immune cell subsets and found that CD9 was expressed on all monocytes as well as a subset of B cells. CD9 was variably expressed on T cells, with CD4 T cells containing the highest frequency of CD9+ cells. CD9 expression positively correlated with the frequency of central memory CD4 T cells in ex vivo PBMC. Therefore, we proceeded to explore CD9 as a marker of T cell function. Here we observed that CD9 was expressed on the vast majority of long-lived influenza A virus-specific effector cells that retained the capacity for cytokine production in response to in vitro recall antigen. Therefore, the new antibodies enable the detection of a cell surface molecule with functional relevance to T cells. Considering the importance of CD9 in membrane remodelling across many cell types, they will also benefit the wider field of swine biomedical research.
Collapse
Affiliation(s)
- Jemma V Milburn
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Anna M Hoog
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Simona Winkler
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Katinka A van Dongen
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Martina Patzl
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Karelle de Luca
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wilhelm Gerner
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria; Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
3
|
Bocking T, Johnson L, Singh A, Desai A, Aulakh GK, Singh B. Research article expression of surfactant protein-A and D, and CD9 in lungs of 1 and 30 day old foals. BMC Vet Res 2021; 17:236. [PMID: 34225699 PMCID: PMC8256609 DOI: 10.1186/s12917-021-02943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background Respiratory diseases are a major cause of morbidity and mortality in the horses of all ages including foals. There is limited understanding of the expression of immune molecules such as tetraspanins and surfactant proteins (SP) and the regulation of the immune responses in the lungs of the foals. Therefore, the expression of CD9, SP-A and SP-D in foal lungs was examined. Results Lungs from one day old (n = 6) and 30 days old (n = 5) foals were examined for the expression of CD9, SP-A, and SP-D with immunohistology and Western blots. Western blot data showed significant increase in the amount of CD9 protein (p = 0.0397) but not of SP-A and SP-D at 30 days of age compared to one day. Immunohistology detected CD9 in the alveolar septa and vascular endothelium but not the bronchiolar epithelium in the lungs of the foals in both age groups. SP-A and SP-D expression was localized throughout the alveolar septa including type II alveolar epithelial cells and the vascular endothelium of the lungs in all the foals. Compared to one day old foals, the expression of SP-A and SP-D appeared to be increased in the bronchiolar epithelium of 30 day old foals. Pulmonary intravascular macrophages were also positive for SP-A and SP-D in 30 days old foals and these cells are not developed in the day old foals. Conclusions This is the first data on the expression of CD9, SP-A and SP-D in the lungs of foals. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02943-5.
Collapse
Affiliation(s)
- Tara Bocking
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Laura Johnson
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Amitoj Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Atul Desai
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Gurpreet Kaur Aulakh
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Baljit Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
4
|
Jankovičová J, Neuerová Z, Sečová P, Bartóková M, Bubeníčková F, Komrsková K, Postlerová P, Antalíková J. Tetraspanins in mammalian reproduction: spermatozoa, oocytes and embryos. Med Microbiol Immunol 2020; 209:407-425. [PMID: 32424440 DOI: 10.1007/s00430-020-00676-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
It is known that tetraspanin proteins are involved in many physiological somatic cell mechanisms. Additionally, research has indicated they also have a role in various infectious diseases and cancers. This review focuses on the molecular interactions underlying the tetraspanin web formation in gametes. Primarily, tetraspanins act in the reproductive tract as organizers of membrane complexes, which include the proteins involved in the contact and association of sperm and oocyte membranes. In addition, recent data shows that tetraspanins are likely to be involved in these processes in a complex way. In mammalian fertilization, an important role is attributed to CD molecules belonging to the tetraspanin superfamily, particularly CD9, CD81, CD151, and also CD63; mostly as part of extracellular vesicles, the significance of which and their potential in reproduction is being intensively investigated. In this article, we reviewed the existing knowledge regarding the expression of tetraspanins CD9, CD81, CD151, and CD63 in mammalian spermatozoa, oocytes, and embryos and their involvement in reproductive processes, including pathological events.
Collapse
Affiliation(s)
- Jana Jankovičová
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Zdeňka Neuerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Petra Sečová
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michaela Bartóková
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kateřina Komrsková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavla Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jana Antalíková
- Laboratory of Reproductive Physiology, Center of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
|
6
|
A SNP (g.358A > T) at intronic region of CD9 molecule of crossbred bulls may associate with spermatozoal motility. Meta Gene 2015; 5:140-3. [PMID: 26925375 PMCID: PMC4722510 DOI: 10.1016/j.mgene.2015.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 11/24/2022] Open
Abstract
The surface expression of CD9 (cluster-of-differentiation antigen-9) in sperms of certain mammalian species has been attributed to its fusion with the egg and thereby dictating the fertility of species. In the present study, we investigated the association of CD9 with crossbred bull sperm quality and quantity trait was analyzed using a total of 96 Frieswal (HF × Sahiwal) crossbred. A single nucleotide polymorphism (g.358A > T) in intron 6 was significantly associated with sperm concentration (P < 0.05) and motility percentage (P < 0.01). mRNA was extracted from good (progressive motility > 50%) and motility impaired (progressive motility < 50%) bull semen. The mRNA expression and seminal plasma protein concentration of CD9 was significantly (P < 0.05) higher among good quality bull semen than motility impaired ones. Our results thus may indicate that, mutation in the intronic region may be responsible for the instability of RNA and the subsequent functional protein expression. A single nucleotide polymorphism (g.358A > T) in intron 6 was significantly associated with sperm concentration. The mRNA expression and seminal plasma protein concentration of CD9 was significantly higher among good quality bull semen than motility impaired ones. Seminal plasma protein concentration of CD9 was higher in good quality semen.
Collapse
|