1
|
Shah S, Rachmat R, Enyioma S, Ghose A, Revythis A, Boussios S. BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations. Int J Mol Sci 2021; 22:12628. [PMID: 34884434 PMCID: PMC8657599 DOI: 10.3390/ijms222312628] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer ranks fifth in cancer-related mortality in men worldwide. DNA damage is implicated in cancer and DNA damage response (DDR) pathways are in place against this to maintain genomic stability. Impaired DDR pathways play a role in prostate carcinogenesis and germline or somatic mutations in DDR genes have been found in both primary and metastatic prostate cancer. Among these, BRCA mutations have been found to be especially clinically relevant with a role for germline or somatic testing. Prostate cancer with DDR defects may be sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors which target proteins in a process called PARylation. Initially they were used to target BRCA-mutated tumor cells in a process of synthetic lethality. However, recent studies have found potential for PARP inhibitors in a variety of other genetic settings. In this review, we explore the mechanisms of DNA repair, potential for genomic analysis of prostate cancer and therapeutics of PARP inhibitors along with their safety profile.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Rachelle Rachmat
- Department of Radiology, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Synthia Enyioma
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK;
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
2
|
Liu J, Zheng J, Guo Y, Sheng X, Yin Y, Qian S, Xu B, Xiong W, Yin X. Association between APE1 rs1760944 and rs1130409 polymorphism with prostate cancer risk: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27630. [PMID: 34797286 PMCID: PMC8601344 DOI: 10.1097/md.0000000000027630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 10/13/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recently, some studies have suggested that the association of apurinic/apyrimidinic endonuclease 1 (APE1) gene polymorphism with prostate cancer (PCa) risk, but there are still some controversies. Hence, we elaborated the relationship between APE1 rs1760944 and rs1130409 gene and PCa risk through systematic literature review and meta-analysis. METHODS As of March 2020, EMBASE, PubMed, the Cochrane Library, Science Direct/Elsevier, MEDLINE and CNKI were used for systematic literature retrieval to investigate the correlation between APE1 rs1760944 and rs1130409 gene polymorphism with PCa risk. Meta-analysis was performed using Review Manager and Stata software. RESULTS Seven studies were distinguished, consists of 1769 cases of PCa patients and 2237 normal controls. Our results illustrated that there are significant correlation between the APE1 rs1760944 gene polymorphism and PCa in all genetic models (P < .05). The combined odds ratios and 95% confidence intervals were as follows: Additive model (ORs 0.62, 95%, CI [0.39, 0.97]); Codominant model (ORs 0.74, 95% CI [0.58, 0.95]); Dominant model (ORs 0.75, 95%, CI [0.59, 0.95]); Recessive model (ORs 0.63, 95% CI [0.41, 0.96]); Allele model (ORs 0.78, 95% CI [0.65, 0.94]). There also have significant associations between APE1 rs1130409 polymorphisms and PCa in all genetic models (P < .05). The combined odds ratios and 95% confidence intervals were as follows: Additive model (ORs 1.37, 95%, CI [1.01, 1.85]); Codominant model (ORs 1.21, 95% CI [1.01, 1.44]); Dominant model (ORs 1.33, 95%, CI [1.02, 1.73]); Recessive model (ORs 1.74, 95% CI [1.06, 2.85]); Allele model (ORs 1.14, 95% CI [1.00, 1.29]). CONCLUSION This study suggests that APE1 rs1760944 polymorphisms might be a protective factor of PCa, and APE1 rs1130409 is suggested to be a risk factor of PCa. APE1 rs1760944 and rs1130409 polymorphisms may be used in the risk assessment of PCa.
Collapse
Affiliation(s)
- Jinnian Liu
- Department of Urology, Second People's Hospital of Banan District, Chongqing, China
| | - Jian Zheng
- Department of Urology, Second People's Hospital of Banan District, Chongqing, China
| | - Yu Guo
- Department of Urology, Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xia Sheng
- Department of Urology, Second People's Hospital of Banan District, Chongqing, China
| | - Yongjian Yin
- Department of Urology, Second People's Hospital of Banan District, Chongqing, China
| | - Shengqiang Qian
- Department of Urology, Traditional Chinese Medicine Hospital, Chongqing, China
| | - Bin Xu
- Department of Urology, Traditional Chinese Medicine Hospital, Chongqing, China
| | - Wei Xiong
- Department of Urology, Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiangrui Yin
- Department of Urology, Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
3
|
Cao L, Cheng H, Jiang Q, Li H, Wu Z. APEX1 is a novel diagnostic and prognostic biomarker for hepatocellular carcinoma. Aging (Albany NY) 2020; 12:4573-4591. [PMID: 32167932 PMCID: PMC7093175 DOI: 10.18632/aging.102913] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 02/05/2023]
Abstract
In this study, we analyzed the expression and clinical significance of apyrimidinic endodeoxyribonuclease 1 (APEX1) in hepatocellular carcinoma (HCC). The APEX1 mRNA and protein levels were significantly higher in HCC than adjacent normal liver tissues in multiple datasets from the Oncomine, GEO and TCGA databases. APEX1 levels were significantly higher in early-stage HCC patients with low alpha-fetoprotein expression. The positive predictive value (PPV) for APEX1 was significantly higher than the PPV for alpha-fetoprotein (67.91% vs. 55.22%) in HCC patients. High APEX1 expression correlated with resistance to sorafenib and anti-programmed death 1 (PD-1) therapies in HCC patients, and it associated with poorer overall survival, disease-specific survival, progression-free survival, and relapse-free survival in early- and advanced-stage HCC patients. High APEX1 expression also associated with poor prognosis in non-alcoholic, vascular invasion-negative, and hepatitis virus-negative HCC patients. These data suggest that APEX1 is a better diagnostic and prognostic biomarker than alpha-fetoprotein in HCC. Gene set enrichment analysis (GSEA) showed that APEX1 expression correlated with the DNA damage repair pathway in HCC tissues. These findings demonstrate that APEX1 is a potential diagnostic and prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Lei Cao
- Department of Hepatobiliary Disease, Dongfang Hospital, Xiamen University, Fuzhou, China.,The 900th Hospital of the People's Liberation Army Joint Service Support Force, Fuzhou, China.,Department of Pathology, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Hongwei Cheng
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Qiuxia Jiang
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Hui Li
- Department of Pathology, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhixian Wu
- Department of Hepatobiliary Disease, Dongfang Hospital, Xiamen University, Fuzhou, China.,The 900th Hospital of the People's Liberation Army Joint Service Support Force, Fuzhou, China
| |
Collapse
|
4
|
Sun HJ, Zhang Y, Zhang JY, Lin H, Chen J, Hong H. The toxicity of 2,6-dichlorobenzoquinone on the early life stage of zebrafish: A survey on the endpoints at developmental toxicity, oxidative stress, genotoxicity and cytotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:719-724. [PMID: 30500751 DOI: 10.1016/j.envpol.2018.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
2,6-dichlorobenzoquinone (2,6-DCBQ), an emerging disinfection by-production, frequently occurs in reclaimed water and drinking water. However, limited information was available regarding its toxicity. To evaluate its impact, zebrafish at early life stage were exposed to 0, 10, 30, 60, 90, or 120 μg L-1 2,6-BDCQ for 72 h. Our results indicated that 2,6-BDCQ decreased zebrafish's survival rate to 65% and 44% at 90 and 120 μg L-1 treatments and increased its aberration rate to 11% and 26% at 90 μg L-1 and 120 μg L-1 treatments. Besides, 2,6-BDCQ had adverse effect on its oxidative stress (elevated superoxide dismutase activity), lipid peroxidation (increased malondialdehyde levels), DNA damage (increased 8-hydroxydeoxyguanosine contents) and apoptosis (increased caspase-3 activity). Although lower concentrations (≤60 μg L-1) of 2,6-BDCQ didn't exhibit significant effect on its survival development or lipid peroxidation of zebrafish, they induced obvious DNA damage and apoptosis occurrence. These results revealed 2,6-BDCQ caused genotoxicity and cytotoxicity to zebrafish. This study provides novel insight into 2,6-DCBQ-induced toxicity in zebrafish.
Collapse
Affiliation(s)
- Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yu Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Jing-Ying Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Huachang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
5
|
Noureddini M, Mobasseri N, Karimian M, Behjati M, Nikzad H. Arg399Gln substitution in XRCC1 as a prognostic and predictive biomarker for prostate cancer: Evidence from 8662 subjects and a structural analysis. J Gene Med 2018; 20:e3053. [DOI: 10.1002/jgm.3053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mahdi Noureddini
- Physiology Research Centre; Kashan University of Medical Sciences; Kashan Iran
- Department of Applied Cell Sciences, Faculty of Medicine; Kashan University of Medical Sciences; Kashan Iran
| | - Narges Mobasseri
- Anatomical Sciences Research Center; Kashan University of Medical Sciences; Kashan Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center; Kashan University of Medical Sciences; Kashan Iran
| | - Mohaddeseh Behjati
- Rajaie Cardiovascular Medical and Research Center; Iran University of Medical Sciences; Tehran Iran
| | - Hossein Nikzad
- Gametogenesis Research Center; Kashan University of Medical Sciences; Kashan Iran
| |
Collapse
|
6
|
Association between the APEX1 Asp148Glu polymorphism and prostate cancer, especially among Asians: a new evidence-based analysis. Oncotarget 2018; 7:52530-52540. [PMID: 27248666 PMCID: PMC5239571 DOI: 10.18632/oncotarget.9693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/16/2016] [Indexed: 12/29/2022] Open
Abstract
Background Prostate cancer (Pca) is a serious disease associated with considerable morbidity and mortality. As a causative factor, the Asp148Glu polymorphism has been identified in the apurinic/apyrimidinic endonuclease (APEX1) gene. However, the association among Asians is considered controversial. Methods Evidence for this association was obtained from the PubMed, Embase, HuGENet and Chinese National Knowledge Infrastructure (CNKI) databases. In the analysis, four models were applied. Associations between the APEX1 polymorphism and the invasiveness of Pca based on the Gleason score, prostate-specific antigen expression and clinical status were also evaluated. Results Seven articles were included in the analysis. Positive results were not only discovered in the pooled analysis, but also among patients of mixed descentand Asian descent. However, after considering the Hardy-Weinberg equilibrium (HWE), we observed only a 1.557-fold increase in Pca risk for subjects of Asian descent(GG vs. TT: OR=1.557, 95%CI=1.069-2.268) under the co-dominant model. Additionally, we did not also find any relationship between the APEX1 Asp148Glu polymorphism and invasive Pca risk. Conclusion On the basis of the function of the APEX1 Asp148Glu polymorphism, recent studies, and our results, we suggest that the APEX1 Asp148Glu polymorphism might be important in stimulating the development of Pca rather than its invasiveness in various populations, especially for Asians.
Collapse
|
7
|
Cypriano AS, Alves G, Ornellas AA, Scheinkman J, Almeida R, Scherrer L, Lage C. Relationship between XPD, RAD51, and APEX1 DNA repair genotypes and prostate cancer risk in the male population of Rio de Janeiro, Brazil. Genet Mol Biol 2017; 40:751-758. [PMID: 29111564 PMCID: PMC5738611 DOI: 10.1590/1678-4685-gmb-2017-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022] Open
Abstract
Susceptibility to cancer ensues in individuals carrying malfunctioning DNA repair
mechanisms. The impact of Single Nucleotide Polymorphisms (SNPs) in key DNA
repair mechanisms on risk for prostate cancer was investigated in this
case-control study. Samples consisted of 110 patients with confirmed prostate
cancer and 200 unaffected men, from Rio de Janeiro, Brazil.
XPD/Lys751Gln (rs13181), APEX1/Asp148Glu
(rs1130409), and RAD51/G135C (rs1801320) SNPs were analyzed by
PCR-RFLP. Allelic and genotypic frequencies were calculated and compared by
Chi-Square test. The association between SNPs and clinical/epidemiological data
was considered significant by Odds Ratio analysis, with IC95% and a
p-value≤0.05. Only the XPD/Lys751Gln SNP significantly
increased susceptibility to disease in southeastern Brazilian men, with
p≤0.001 [OR=2.36 (1.46-3.84)], with no association with
APEX1 or RAD51 SNPs. Combined
XPD+RAD51 SNPs were highly associated with
the disease, p≤0.005 [OR=3.40 (1.32-9.20)]. A Chi-Square
significant association between XPD/Lys751Gln and Gleason score
was also observed (OR=9.31; IC95%=1.19–428.0; p=0.022).
Epidemiological inquiries revealed that exposure to pesticides significantly
impacted the risk for prostate cancer in this population. DNA repair
dysfunctions seem to prevail among workers exposed to chemical byproducts to
cancer in this specific tissue. Non-invasive genotyping SNPs may help assessment
of prostate cancer risk in environmentally exposed populations.
Collapse
Affiliation(s)
- Ana Sheila Cypriano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Gilda Alves
- Instituto Nacional de Câncer, Hospital do Câncer I, Rio de Janeiro, RJ, Brazil.,Laboratório de Marcadores Circulantes, Departamento de Patologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Augusto Ornellas
- Instituto Nacional de Câncer, Hospital do Câncer I, Rio de Janeiro, RJ, Brazil.,Hospital Mário Kroeff, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Claudia Lage
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Juhnke M, Heumann A, Chirico V, Höflmayer D, Menz A, Hinsch A, Hube-Magg C, Kluth M, Lang DS, Möller-Koop C, Sauter G, Simon R, Beyer B, Pompe R, Thederan I, Schlomm T, Luebke AM. Apurinic/apyrimidinic endonuclease 1 (APE1/Ref-1) overexpression is an independent prognostic marker in prostate cancer withoutTMPRSS2:ERGfusion. Mol Carcinog 2017; 56:2135-2145. [DOI: 10.1002/mc.22670] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/19/2017] [Accepted: 05/01/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Manuela Juhnke
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Viktoria Chirico
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Doris Höflmayer
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Anne Menz
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Andrea Hinsch
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Claudia Hube-Magg
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Martina Kluth
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Dagmar S. Lang
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Christina Möller-Koop
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Guido Sauter
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Ronald Simon
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Burkhard Beyer
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Raisa Pompe
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Imke Thederan
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
- Department of Urology, Section for Translational Prostate Cancer Research; University Medical Center Hamburg-Eppendorf; Germany
| | - Andreas M. Luebke
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
9
|
Zhang M, Li W, Hao Z, Zhou J, Zhang L, Liang C. Association Between Twelve Polymorphisms in Five X-ray Repair Cross-complementing Genes and the Risk of Urological Neoplasms: A Systematic Review and Meta-Analysis. EBioMedicine 2017; 18:94-108. [PMID: 28330811 PMCID: PMC5405151 DOI: 10.1016/j.ebiom.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 01/03/2023] Open
Abstract
Polymorphisms in X-ray repair cross-complementing (XRCC) genes have been implicated in altering the risk of various urological cancers. However, the results of reported studies are controversial. To ascertain whether polymorphisms in XRCC genes are associated with the risk of urological neoplasms, we conducted present updated meta-analysis and systematic review. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were used to estimate the association. Finally, 54 publications comprising 129 case-control studies for twelve polymorphisms in five XRCC genes were enrolled. We identified that XRCC1-rs25489 polymorphism was associated with an increased risk of urological neoplasms in heterozygote and dominant models. Moreover, in the subgroup analysis by cancer type, we found that XRCC1-rs25489 polymorphism was associated with an increased risk of bladder cancer (BC) in heterozygote model. Although overall analyses suggested a null result for XRCC1-rs25487 polymorphism, in the stratified analysis by ethnicity, an increased risk of urological neoplasms for Asians in allelic and homozygote models was identified. While for other polymorphisms in XRCC genes, no significant association was uncovered. To sum up, our results indicated that XRCC1-rs25489 polymorphism is a risk factor for urological neoplasms, particularly for BC. Further studies with large sample size are needed to validate these findings.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Graduate School of Anhui Medical University, Hefei, China
| | - Wanzhen Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Graduate School of Anhui Medical University, Hefei, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Graduate School of Anhui Medical University, Hefei, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Graduate School of Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Graduate School of Anhui Medical University, Hefei, China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Graduate School of Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Zhong JH, Zhao Z, Liu J, Yu HL, Zhou JY, Shi R. Association between APE1 Asp148Glu polymorphism and the risk of urinary cancers: a meta-analysis of 18 case-control studies. Onco Targets Ther 2016; 9:1499-510. [PMID: 27042118 PMCID: PMC4801150 DOI: 10.2147/ott.s101456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Several observational studies suggested that APE1 Asp148Glu was significantly associated with urinary cancers; however, the results of published studies are inconsistent. Materials and methods The PubMed and EMBASE were searched for case–control studies regarding the association between Asp148Glu and the risk of urinary cancers with a time limit of September 12, 2015. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association between Asp148Glu and the risk of developing prostate cancer, kidney cancer, bladder cancer, as well as all urinary cancers combined. Results A total of 18 case–control studies were included in the analysis. Our meta-analysis revealed that the inheritance of at least one APE1 148Glu among Asian men was associated with a 1.26-fold increase in the risk of developing urinary cancers. Meanwhile, APE1 Asp148Glu was significantly associated with the risk of prostate cancer. However, there were no significant relationships between the APE1 SNP (single nucleotide polymorphism) and all urinary cancers combined and bladder cancer and kidney cancer among the men of Caucasian/Asian/African descent or all racial/ethnic groups combined. When stratified by the quality score, no significant association was found in high-quality studies (score ≥7), but a significant increased risk of urinary cancers was observed in lower quality studies (score <7) (dominant model: OR=1.27, 95% CI=1.11–1.45). Conclusion Our meta-analysis suggests that APE1 Asp148Glu was not associated with the risk of urinary cancers but might increase the risk of urinary cancers among Asians. Stratification by cancer type identified a significant association of Asp148Glu with prostate cancer.
Collapse
Affiliation(s)
- Jie-Hui Zhong
- Department of Clinical Medicine, The First Clinical Medical College, Southern Medical University, Guangzhou, People's Republic of China; Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhen Zhao
- Department of Urinary Surgery, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hai-Lang Yu
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jue-Yu Zhou
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Rong Shi
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Meta-Analysis of the Relationship between XRCC1-Arg399Gln and Arg280His Polymorphisms and the Risk of Prostate Cancer. Sci Rep 2015; 5:9905. [PMID: 25927275 PMCID: PMC4415422 DOI: 10.1038/srep09905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/18/2015] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is one of the most common noncutaneous malignancies in Western countries. Because there has been a debate regarding the relationship between the XRCC1-Arg399Gln and Arg280His polymorphisms and prostate cancer risk, we therefore performed this meta-analysis. The electronic databases PubMed, EMBASE, and Medline were searched prior to October 1, 2014. An odds ratio and 95% confidence interval were used to calculate association. Heterogeneity was tested by both a chi-square test and I statistic. Funnel plots and Egger's test were used to assess publication bias. All statistical analyses were performed using STATA 12.0 software. A significant association between the XRCC1-Arg399Gln polymorphism and prostate cancer risk was found under a homozygote model and a recessive model. A significant association between XRCC1-Arg280His and prostate cancer risk was found under a heterozygote model and a dominant model [corrected]. Overall, the results of this meta-analysis show that the XRCC1-Arg399Gln polymorphism may be associated with an increased risk for prostate cancer under the homozygote model and the recessive model. And XRCC1-Arg280His polymorphism is likely to be related with prostate cancer risk under the heterozygote model and the dominant model. Additional larger well-designed studies are needed to validate our results.
Collapse
|
12
|
X-ray repair cross-complementing group 1 (XRCC1) Arg399Gln polymorphism significantly associated with prostate cancer. Int J Biol Markers 2015; 30:e12-21. [PMID: 25262700 DOI: 10.5301/jbm.5000111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 12/20/2022]
Abstract
Prostate cancer (Pca) is one of the noncutaneous cancers occurring worldwide. Its high morbidity and mortality make it a concern. X-ray repair cross-complementing group 1 (XRCC1) Arg399Gln polymorphism (rs25487) has been reported to be related to Pca. However, the conclusions are controversial. In this study, PubMed, HuGENet and Chinese National Knowledge Infrastructure (CNKI) databases were combined with a comprehensive literature search. Four models including dominant (AA + AG vs. GG), recessive (AA vs. AG+GG), codominant (AA vs. AG, AA vs. GG) and per-allele analysis (A vs. G) were applied. Finally, 15 studies with 18 sets of data were included. A positive association was discovered in pooled results for recessive (odds ratio [OR]=1.202, 95% confidence interval [95% CI], 1.060-1.363, I2=46.20%), codominant (AA vs. AG; OR=1.258, 95% CI, 1.099-1.439, I2=38.50%; AA vs. GG; OR=1.283, 95% CI, 1.027-1.602, I2=51.70%) and allele analysis (OR=1.116, 95% CI, 1.001-1.244, I2=58.00%). In ethnicity subgroup analysis, these 4 models were also significant in the Asian subgroup. However, for whites, only 2 models seemed to be significant (AA vs. AG+GG: OR=1.525, 95% CI, 1.111-2.093, I2=52.60%; AA vs. AG: OR=1.678, 95% CI, 1.185-2.375, I2=30.70%). In further analysis, we regrouped the data based on race, in which pooled results and Asian subgroup were again shown to be positive. In the next analysis, expression quantitative trait loci (eQTL), linkage disequilibrium (LD), TagSNP and functional analysis were used. The results showed that the SNP was a tag and functional SNP with LD block in both Asians and whites. In summary, we suggest that XRCC1 Arg399Gln might be significantly associated with development of Pca.
Collapse
|
13
|
The association between the APE1 Asp148Glu polymorphism and prostate cancer susceptibility: a meta-analysis based on case–control studies. Mol Genet Genomics 2014; 290:281-8. [DOI: 10.1007/s00438-014-0916-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022]
|
14
|
Association between APE1 T1349G polymorphism and prostate cancer risk: evidence from a meta-analysis. Tumour Biol 2014; 35:10111-9. [DOI: 10.1007/s13277-014-2115-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/19/2014] [Indexed: 10/25/2022] Open
|
15
|
Plant flavone apigenin binds to nucleic acid bases and reduces oxidative DNA damage in prostate epithelial cells. PLoS One 2014; 9:e91588. [PMID: 24614817 PMCID: PMC3948873 DOI: 10.1371/journal.pone.0091588] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/12/2014] [Indexed: 02/03/2023] Open
Abstract
Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it's binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2' deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities.
Collapse
|
16
|
APEX nuclease (multifunctional DNA repair enzyme) 1 gene Asp148Glu polymorphism and cancer risk: a meta-analysis involving 58 articles and 48903 participants. PLoS One 2013; 8:e83527. [PMID: 24349526 PMCID: PMC3861501 DOI: 10.1371/journal.pone.0083527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 11/05/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Polymorphisms in the APEX nuclease (multifunctional DNA repair enzyme) 1 gene (APEX1) may be involved in the carcinogenesis by affecting DNA repair. We aimed to summarize available data on the association of the APEX1 Asp148Glu (rs1130409) polymorphism with risk of multiple types of cancer via a meta-analysis. METHODS AND RESULTS In total, 58 qualified articles including 22,398 cancer patients and 26,505 controls were analyzed, and the data were extracted independently by two investigators. Analyses of the full data set indicated a marginally significant association of the APEX1 Asp148Glu polymorphism with cancer risk under allelic (odds ratio (OR)=1.05; 95% confidence interval (95% CI): 0.99-1.11; P=0.071), dominant (OR=1.09; 95% CI: 1.01-1.17; P=0.028), and heterozygous genotypic (OR=1.08; 95% CI: 1.01-1.16; P=0.026) models, with significant heterogeneity and publication bias. In subgroup analyses by cancer type, with a Bonferroni corrected alpha of 0.05/6, significant association was observed for gastric cancer under both dominant (OR=1.74; 95% CI: 1.2-2.51; P=0.003) and heterozygous genotypic (OR=1.66; 95% CI: 1.2-2.31; P=0.002) models. In subgroup analysis by ethnicity, risk estimates were augmented in Caucasians, especially under dominant (OR=1.11; 95% CI: 1.0-1.24; P=0.049) and heterozygous genotypic (OR=1.11; 95% CI: 0.99-1.24; P=0.063) models. By study design, there were no significant differences between population-based and hospital-based studies. In subgroup analysis by sample size, risk estimates were remarkably overestimated in small studies, and no significance was reached in large studies except under the heterozygous genotypic model (OR=1.23; 95% CI: 1.06-1.43; P=0.006, significant at a Bonferroni corrected alpha of 0.05/2). By quality score, the risk estimates, albeit nonsignificant, were higher in low-quality studies than in high-quality studies. Further meta-regression analyses failed to identify any contributory confounders for the associated risk estimates. CONCLUSIONS Our findings suggest that APEX1 Asp148Glu polymorphism might be a genetic risk factor for the development of gastric cancer. Further investigations on large populations are warranted.
Collapse
|
17
|
Xu G, Wang M, Xie W, Bai X. Three polymorphisms of DNA repair gene XRCC1 and the risk of glioma: a case–control study in northwest China. Tumour Biol 2013; 35:1389-95. [DOI: 10.1007/s13277-013-1191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/09/2013] [Indexed: 01/02/2023] Open
|
18
|
Zhou YF, Zhang GB, Qu P, Zhou J, Pan HX, Hou JQ. Association between single nucleotide polymorphisms in the XRCC1 gene and susceptibility to prostate cancer in Chinese men. Asian Pac J Cancer Prev 2013; 13:5241-3. [PMID: 23244143 DOI: 10.7314/apjcp.2012.13.10.5241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer (Pca) is one of the most common complex and polygenic diseases in men. The X-ray repair complementing group 1 gene (XRCC1) is an important candidate in the pathogenesis of Pca. The purpose of this study was to evaluate the association between single nucleotide polymorphisms in the XRCC1 gene and susceptibility to Pca. MATERIALS AND METHODS XRCC1 gene polymorphisms and associations with susceptibility to Pca were investigated in 193 prostate patients and 188 cancer-free Chinese men. RESULTS The c.910A>G variant in the exon9 of XRCC1 gene could be detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing methods. Significantly increased susceptibility to prostate cancer was noted in the homozygote comparison (GG versus AA: OR=2.95, 95% CI 1.46-5.42, χ2=12.36, P=0.001), heterozygote comparison (AG versus AA: OR=1.76, 95% CI 1.12-2.51, χ2=4.04, P=0.045), dominant model (GG/AG versus AA: OR=1.93, 95% CI 1.19-2.97, χ2=9.12, P=0.003), recessive model (GG versus AG+AA: OR=2.17, 95% CI 1.33-4.06, χ2=8.86, P=0.003) and with allele contrast (G versus A: OR=1.89, 95% CI 1.56-2.42, χ2=14.67, P<0.000). CONCLUSIONS These findings suggest that the c.910A>G polymorphism of the XRCC1 gene is associated with susceptibility to Pca in Chinese men, the G-allele conferring higher risk.
Collapse
Affiliation(s)
- Yun-Feng Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
19
|
Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer Lett 2012; 327:73-89. [PMID: 22252118 DOI: 10.1016/j.canlet.2011.12.038] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/20/2011] [Accepted: 12/24/2011] [Indexed: 01/13/2023]
Abstract
Base excision repair is the system used from bacteria to man to remove the tens of thousands of endogenous DNA damages produced daily in each human cell. Base excision repair is required for normal mammalian development and defects have been associated with neurological disorders and cancer. In this paper we provide an overview of short patch base excision repair in humans and summarize current knowledge of defects in base excision repair in mouse models and functional studies on short patch base excision repair germ line polymorphisms and their relationship to cancer. The biallelic germ line mutations that result in MUTYH-associated colon cancer are also discussed.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, 05405-0068, United States.
| | | | | |
Collapse
|
20
|
Wei B, Zhou Y, Xu Z, Ruan J, Zhu M, Jin K, Zhou D, Hu Q, Wang Q, Wang Z, Yan Z. XRCC1 Arg399Gln and Arg194Trp polymorphisms in prostate cancer risk: a meta-analysis. Prostate Cancer Prostatic Dis 2011; 14:225-31. [PMID: 21647176 DOI: 10.1038/pcan.2011.26] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epidemiological studies have evaluated the association between X-ray repair cross-complementing group 1 gene (XRCC1) Arg399Gln and Arg194Trp polymorphisms and risk of prostate cancer (PCa). However, the results from the published studies on the association between these two XRCC1 polymorphisms and PCa risk are conflicting. To derive a more precise estimation of association between the XRCC1 polymorphisms and risk of PCa, we performed a meta-analysis. A comprehensive search was conducted to identify all case-control studies of XRCC1 polymorphisms and PCa risk. We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. Overall, we found that both Arg399Gln and Arg194Trp polymorphisms were not significantly associated with PCa risk. However, in stratified analysis by ethnicity, we found that the Arg399Gln polymorphism was significantly associated with PCa risk in Asian population (Gln/Gln vs Arg/Arg: OR=1.46, 95% CI: 1.05-2.03, P=0.03; Gln/Gln vs Arg/Gln+Arg/Arg: OR=1.48, 95% CI: 1.12-1.95, P=0.01). In this meta-analysis, we found that both Arg399Gln and Arg194Trp polymorphisms were not related to overall PCa risk. However, in subgroup analysis we found a suggestion that XRCC1 399Gln allele might be a low-penetrent risk factor for PCa only in Asian men.
Collapse
Affiliation(s)
- B Wei
- Department of Urology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|